Atacama B-Mode Search

Last updated
Atacama B-Mode Search
Atacama Bmode Search on container.JPG
The Atacama B-Mode Search on top of its shipping container.
Location(s)Atacama Desert
Coordinates 22°58′S67°47′W / 22.96°S 67.79°W / -22.96; -67.79 Coordinates: 22°58′S67°47′W / 22.96°S 67.79°W / -22.96; -67.79 OOjs UI icon edit-ltr-progressive.svg
Altitude5,200 m (17,100 ft) OOjs UI icon edit-ltr-progressive.svg
Wavelength 2 mm (150 GHz)
Telescope style cosmic microwave background experiment
radio telescope   OOjs UI icon edit-ltr-progressive.svg
Website www.princeton.edu/physics/research/cosmology-experiment/abs-experiment/ OOjs UI icon edit-ltr-progressive.svg
Relief Map of Chile.jpg
Red pog.svg
Location of Atacama B-Mode Search
Commons-logo.svg Related media on Wikimedia Commons

The Atacama B-Mode Search (ABS) was an experiment to test the theory of cosmic inflation and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB). ABS was located at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. [1] ABS began observations in February 2012 and completed observations in October 2014.

Contents

Instrument

The ABS telescope imaged the sky at a frequency of 145 GHz (2 mm wavelength), in the microwave region of the electromagnetic spectrum, where the CMB emission is at its maximum. The CMB is expected to be weakly polarized, and the ABS instrument is designed to measure this very faint signal. The camera consisted of 240 polarization-sensitive pixels, with two transition-edge-sensor (TES) bolometers per pixel. This TES array was cooled to a temperature of 0.3 Kelvin to reduce thermal noise in the detectors. [2] The optics consisted of two 60 cm mirrors that were kept at a temperature of 4 K.

At the frequencies relevant for measuring the CMB, emission from water vapor in the atmosphere can be a strong contaminant. The high altitude of the site (5200 m above sea level) and its very dry climate resulted in less signal contamination from the atmosphere than would be obtained from most other sites on Earth. Nearby sites have been chosen by other observatories for the same reason, including ACT, ALMA, APEX, ASTE, CBI, Nanten, and POLARBEAR/Simons Array.

The ABS experiment was designed for rapid deployment by being built in North America into a standard shipping container. Upon arrival in Chile, the telescope was raised out of a special hatch in the roof of the shipping container for observations. Compared to other similar experiments, ABS was unique in using an ambient-temperature half-wave plate to quickly modulate incoming polarization. [3] This allowed the instrument to "lock in" to the polarized signal of interest and reject the atmosphere, which is largely unpolarized.

Science goals

The observations made by ABS tested the theory of inflation. Inflation is the leading theory of the very early universe; [4] however, observational evidence for inflation is still inconclusive. Inflationary models generically predict that a gravitational-wave background (GWB) would have been produced along with the density perturbations that seed large-scale structure formation. Such a GWB would leave an imprint on both the temperature and polarization of the CMB. In particular it would leave a unique pattern of polarization, called a B-mode pattern, in the CMB polarization. A measurement of B-mode polarization in the CMB would be important confirmation of inflation and would provide a rare glimpse into physics at ultra-high energies. [5] [6]

Results

Based on an analysis of data from a 2400 deg2 primary observing patch (roughly 6% of the full sky), the ABS experiment measured the expected polarization of the CMB from density perturbations in the early universe, but found no evidence for a GWB from inflation. [7] The ABS experiment also demonstrated the ability to use a half-wave plate as a fast, front-end polarization modulator for measurement stability [3] and control of systematic errors. [8]

The ABS project was supported by funding from the NSF, NASA, and CONICYT. Major collaborating institutions included Princeton University, the Johns Hopkins University, NIST, and the Universidad de Chile.

See also

Related Research Articles

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

The cosmic microwave background, in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

Wilkinson Microwave Anisotropy Probe defunct American uncrewed spacecraft

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP), is an inactive uncrewed spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on June 30, 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorers program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency in 2009.

Sunyaev–Zeldovich effect

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

Inflationary epoch theoretical period when the early universe expanded extremely rapidly

In physical cosmology the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the linear dimensions of the early universe by a factor of at least 1026 (and possibly a much larger factor), and so increased its volume by a factor of at least 1078. Expansion by a factor of 1026 is equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 62 trillion miles) long.

Clover would have been an experiment to measure the polarization of the Cosmic Microwave Background. It was approved for funding in late 2004, with the aim of having the full telescope operational by 2009. The project was jointly run by Cardiff University, Oxford University, the Cavendish Astrophysics Group and the University of Manchester.

Polarization is an important phenomenon in astronomy.

South Pole Telescope Telescope at the South Pole

The South Pole Telescope (SPT) is a 10-metre (390 in) diameter telescope located at the Amundsen–Scott South Pole Station, Antarctica. The telescope is designed for observations in the microwave, millimeter-wave, and submillimeter-wave regions of the electromagnetic spectrum, with the particular design goal of measuring the faint, diffuse emission from the cosmic microwave background (CMB). The first major survey with the SPT—designed to find distant, massive, clusters of galaxies through their interaction with the CMB, with the goal of constraining the dark energy equation of state—was completed in October 2011. In early 2012, a new camera (SPTpol) was installed on the SPT with even greater sensitivity and the capability to measure the polarization of incoming light. This camera operated from 2012–2016 and was used to make unprecedentedly deep high-resolution maps of hundreds of square degrees of the Southern sky. In 2017, the third-generation camera SPT-3G was installed on the telescope, providing nearly an order-of-magnitude increase in mapping speed over SPTpol.

Atacama Cosmology Telescope

The Atacama Cosmology Telescope (ACT) is a six-metre telescope on Cerro Toco in the Atacama Desert in the north of Chile, near the Llano de Chajnantor Observatory. It makes high-resolution, microwave-wavelength surveys of the sky in order to study the cosmic microwave background radiation (CMB). At an altitude of 5,190 metres (17,030 ft), it is one of the highest permanent, ground-based telescopes in the world.

Llano de Chajnantor Observatory Observatory

Llano de Chajnantor Observatory is the name for a group of astronomical observatories located at an altitude of over 4,800 m (15,700 ft) in the Atacama Desert of northern Chile. The site is in the Antofagasta Region approximately 50 kilometres (31 mi) east of the town of San Pedro de Atacama. The exceptionally arid climate of the area is inhospitable to humans, but creates an excellent location for millimeter, submillimeter, and mid-infrared astronomy. This is because water vapour absorbs and attenuates submillimetre radiation. Llano de Chajnantor is home to the largest and most expensive astronomical telescope project in the world, the Atacama Large Millimeter Array (ALMA). Llano de Chajnantor and the surrounding area has been designated as the Chajnantor Science Reserve by the government of Chile.

Degree Angular Scale Interferometer

The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz in ten bands. The instrument is similar in design to the Cosmic Background Imager (CBI) and the Very Small Array (VSA). In 2001 The DASI team announced the most detailed measurements of the temperature, or power spectrum of the Cosmic microwave background (CMB). These results contained the first detection of the 2nd and 3rd acoustic peaks in the CMB, which were important evidence for inflation theory. This announcement was done in conjunction with the BOOMERanG and MAXIMA experiment. In 2002 the team reported the first detection of polarization anisotropies in the CMB.

Archeops

Archeops was a balloon-borne instrument dedicated to measuring the Cosmic microwave background (CMB) temperature anisotropies. The study of this radiation is essential to obtain precise information on the evolution of the Universe: density, Hubble constant, age of the Universe, etc. To achieve this goal, measurements were done with devices cooled down at 100mK temperature placed at the focus of a warm telescope. To avoid atmospheric disturbance the whole apparatus is placed on a gondola below a helium balloon that reaches 40 km altitude.

QUIET

QUIET was an astronomy experiment to study the polarization of the cosmic microwave background radiation. QUIET stands for Q/U Imaging ExperimenT. The Q/U in the name refers to the ability of the telescope to measure the Q and U Stokes parameters simultaneously. QUIET was located at an elevation of 5,080 metres at Llano de Chajnantor Observatory in the Chilean Andes. It began observing in late 2008 and finished observing in December 2010.

BICEP and Keck Array

BICEP and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the B-mode of the CMB. The experiments have had five generations of instrumentation, consisting of BICEP1, BICEP2, the Keck Array, BICEP3, and the BICEP Array. The Keck Array started observations in 2012 and BICEP3 has been fully operational since May 2016, with the BICEP Array beginning installation in 2017/18.

POLARBEAR

POLARBEAR is a cosmic microwave background polarization experiment located in the Atacama Desert of northern Chile in the Antofagasta Region. The POLARBEAR experiment is mounted on the Huan Tran Telescope (HTT) at the James Ax Observatory in the Chajnantor Science Reserve. The HTT is located near the Atacama Cosmology Telescope on the slopes of Cerro Toco at an altitude of nearly 5,200 m (17,100 ft).

Cosmology Large Angular Scale Surveyor

The Cosmology Large Angular Scale Surveyor (CLASS) is an array of microwave telescopes at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. The CLASS experiment aims to improve our understanding of cosmic dawn when the first stars turned on, test the theory of cosmic inflation, and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB) over 65% of the sky at multiple frequencies in the microwave region of the electromagnetic spectrum.

Simons Observatory

The Simons Observatory is located in the high Atacama Desert in Northern Chile inside the Chajnator Science Preserve, at an altitude of 5,200 meters (17,000 ft). The Atacama Cosmology Telescope (ACT) and the Simons Array are located nearby and these experiments are currently making observations of the Cosmic Microwave Background (CMB). Their goals are to study how the universe began, what it is made of, and how it evolved to its current state. The Simons Observatory shares many of the same goals but aims to take advantage of advances in technology to make far more precise and diverse measurements. In addition, it is envisaged that many aspects of the Simons Observatory will be pathfinders for the future CMB-S4 array.

LiteBIRD is a planned small space observatory that aims to detect the footprint of the primordial gravitational wave on the cosmic microwave background (CMB) in a form of polarization pattern called B-mode.

Crossed Dragone

The Crossed Dragone Telescope is an off-axis telescope design consisting of a parabolic primary mirror and a large concave secondary mirror arranged so that the focal plane is at right angles to the incoming light. In this configuration the polarization of light is preserved through the optics.

In cosmological inflation, within the slow-roll paradigm, the Lyth argument places a theoretical upper bound on the amount of gravitational waves produced during inflation, given the amount of departure from homogeneity of the CMB.

References

  1. "Astronomy, Technology, Industry: Roadmap for the Fostering of Technology Development and Innovation in the Field of Astronomy in Chile" (PDF). CONICYT Ministry of Education, Government of Chile. Retrieved 2014-02-10.
  2. Essinger-Hileman, T.; et al. (2010). "The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers". Proceedings of the Thirteenth International Conference on Low-Temperature Detectors. 1185. arXiv: 1008.3915 . Bibcode:2010arXiv1008.3915E.
  3. 1 2 Kusaka, A.; Essinger-Hileman, T.; et al. (2014). "Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument". Review of Scientific Instruments. 85 (2): 024501. arXiv: 1310.3711 . Bibcode:2014RScI...85b4501K. doi:10.1063/1.4862058. PMID   24593374. S2CID   11402132.
  4. Linde, A. (2014). "Inflationary Cosmology after Planck 2013". arXiv: 1402.0526 [hep-th].
  5. Boyle, Latham A.; Steinhardt, PJ; Turok, N (2006). "Inflationary predictions for scalar and tensor fluctuations reconsidered". Physical Review Letters. 96 (11): 111301. arXiv: astro-ph/0507455 . Bibcode:2006PhRvL..96k1301B. doi:10.1103/PhysRevLett.96.111301. PMID   16605810. S2CID   10424288.
  6. Tegmark, Max (2005). "What does inflation really predict?". Journal of Cosmology and Astroparticle Physics. 0504 (4): 001. arXiv: astro-ph/0410281 . Bibcode:2005JCAP...04..001T. doi:10.1088/1475-7516/2005/04/001. S2CID   17250080.
  7. Kusaka, A.; Essinger-Hileman, T.; Appel, J.; et al. (2018). "Results from the Atacama B-mode Search (ABS) experiment". Journal of Cosmology and Astroparticle Physics. 2018 (9): 005. arXiv: 1801.01218 . Bibcode:2018JCAP...09..005K. doi:10.1088/1475-7516/2018/09/005. S2CID   119215411.
  8. Essinger-Hileman, T.; Kusaka, A.; et al. (2016). "Systematic effects from an ambient-temperature, continuously rotating half-wave plate". Review of Scientific Instruments. 87 (9): 004503. arXiv: 1601.05901 . Bibcode:2016RScI...87i4503E. doi:10.1063/1.4962023. PMID   27782567. S2CID   26118617.