Alternative names | ARCHEOPS |
---|---|
Wavelength | 143, 217, 353, 545 GHz (2.096, 1.382, 0.849, 0.550 mm) |
First light | 1999 |
Decommissioned | 2002 |
Telescope style | cosmic microwave background experiment radio telescope |
Angular resolution | 15 arcminute |
Website | archeops |
Related media on Commons | |
Archeops was a balloon-borne instrument dedicated to measuring the Cosmic microwave background (CMB) temperature anisotropies. The study of this radiation is essential to obtain precise information on the evolution of the Universe: density, Hubble constant [ broken anchor ], age of the Universe, etc. To achieve this goal, measurements were done with devices cooled down at 100mK temperature placed at the focus of a warm telescope. To avoid atmospheric disturbance the whole apparatus is placed on a gondola below a helium balloon that reaches 40 km altitude.
Archeops has four bands in the millimeter domain (143, 217, 353 and 545 GHz) with a high angular resolution (about 15 arcminutes) in order to constrain small anisotropy scales, as well as a large sky coverage fraction (30%) in order to minimize the intrinsic cosmic variance.
The instrument was designed by adapting concepts put forward for the High Frequency Instrument of Planck surveyor (Planck-HFI) and using balloon-borne constraints. [1] Namely, it consists of an open 3He-4He dilution cryostat cooling spiderweb-type bolometers at 100 mK; cold individual optics with horns at different temperature stages (0.1, 1.6, 10 K) and an off-axis Gregorian telescope.
The CMB signal is measured by the 143 and 217 GHz detectors while interstellar dust emission and atmospheric emission are monitored with the 353 (polarized) and 545 GHz detectors. The whole instrument is baffled so as to avoid stray radiation from the Earth and the balloon.
To cover as far as 30% of the sky, the payload was spinning mostly above the atmosphere, scanning the sky in circles with a fixed elevation of roughly 41 degrees. The gondola, at a float altitude above 32 km, spins across the sky at a rate of 2 rpm which, combined with the Earth rotation, produces a well sampled sky at each frequency.
Archeops flew for the first time in Trapani (Sicily) with four–hours integration time. Then, the upgraded instrument was launched three times from the Esrange base near Kiruna (Sweden) by the CNES during 2 consecutive Winter seasons (2001 and 2002). The last and best flight on Feb. 7th, 2002 yields 12.5 hours of CMB–type data (at ceiling altitude and by night) from a 19–hours total. The balloon landed in Siberia and it was recovered (with its precious data recorded on–board) by a Franco–Russian team with –40°C weather.
Archeops has linked, for the first time and before WMAP, the large angular scales (previously measured by COBE) to the first acoustic peak region. [2] [3]
From its results, inflation motivated cosmologies have been reinforced with a flat Universe (total energy density Ωtot = 1 within 3%). When combined with complementary cosmological datasets regarding the value of Hubble's constant, Archeops gives constraints on the dark energy density and the baryonic density in very good agreement with other independent estimations based on supernovae measurements and big bang nucleosynthesis. [4]
Archeops has given the first polarized maps of the galactic dust emission with this resolution. [5] [6]
The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the electromagnetic spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang.
The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.
The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:
BOOMERanG experiment was an experiment that flew a telescope on a (high-altitude) balloon and measured the cosmic microwave background radiation of a part of the sky during three sub-orbital flights. It was the first experiment to make large, high-fidelity images of the CMB temperature anisotropies, and is best known for the discovery in 2000 that the geometry of the universe is close to flat, with similar results from the competing MAXIMA experiment.
Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013. It was an ambitious project that aimed to map the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and angular resolution. The mission was highly successful and substantially improved upon observations made by the NASA Wilkinson Microwave Anisotropy Probe (WMAP).
Rho Virginis is the Bayer designation for a star in the constellation Virgo. It has an apparent visual magnitude of +4.9, making it a challenge to view with the naked eye from an urban area. The distance to this star has been measured directly using the parallax method, which places it 118.3 light-years away with a margin of error of about a light year.
58 Eridani is a main-sequence star in the constellation Eridanus. It is a solar analogue, having similar physical properties to the Sun. The star has a relatively high proper motion across the sky, and it is located 43 light years distant. It is a probable member of the IC 2391 moving group of stars that share a common motion through space.
14 Eridani is a star in the equatorial Eridanus constellation. It has an apparent visual magnitude of 6.143 and is moving closer to the Sun with a radial velocity of around −5 km/s. The measured annual parallax shift is 29.26 mas, which provides an estimated distance of about 121 light years. Proper motion studies indicate that this is an astrometric binary.
The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 μK (0.00007 K) colder than the average CMB temperature, whereas the root mean square of typical temperature variations is only 18 μK. At some points, the "cold spot" is 140 μK colder than the average CMB temperature.
Cosmic infrared background is infrared radiation caused by stellar dust.
S Persei is a red supergiant or hypergiant located near the Double Cluster in Perseus, north of the cluster NGC 869. It is a member of the Perseus OB1 association and one of the largest known stars. If placed in the Solar System, its photosphere would engulf the orbit of Jupiter. It is also a semiregular variable, a star whose variations are less regular than those of Mira variables.
In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.
BICEP and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the B-mode of the CMB. The experiments have had five generations of instrumentation, consisting of BICEP1, BICEP2, the Keck Array, BICEP3, and the BICEP Array. The Keck Array started observations in 2012 and BICEP3 has been fully operational since May 2016, with the BICEP Array beginning installation in 2017/18.
V602 Carinae is a red supergiant and variable star of spectral type M3 in the constellation Carina. It is considered to be one of largest known stars, being around 1,000 times larger than the Sun.
Tau1 Lupi, Latinized from τ1 Lupi, is a solitary star in the southern constellation of Lupus. It is visible to the naked eye with an apparent visual magnitude of 4.5. Based upon an annual parallax shift of only 2.99 mas as seen from Earth, it is located about 1,090 light years from the Sun. Tau1 Lupi may be a runaway star having a peculiar velocity of 32.6±3.6 km/s. It is a member of the Upper Centaurus–Lupus sub-group of the nearby Sco OB2 association.
NGC 4388 is an active spiral galaxy in the equatorial constellation of Virgo. It was discovered April 17, 1784 by Wilhelm Herschel. This galaxy is located at a distance of 57 million light years and is receding with a radial velocity of 2,524km/s. It is one of the brightest galaxies of the Virgo Cluster due to its luminous nucleus. NGC 4388 is located 1.3° to the west of the cluster center, which translates to a projected distance of ≈400 kpc.
The "axis of evil" is a name given to an unsubstantiated correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle. A 2016 study compared isotropic and anisotropic cosmological models against WMAP and Planck data and found no evidence for anisotropy.
S Cassiopeiae is a Mira variable and S-type star in the constellation Cassiopeia. It is an unusually cool star, rapidly losing mass and surrounded by dense gas and dust producing masers.