Qubic experiment

Last updated
Q&U Bolometric Interferometer for Cosmology
Alternative namesQubic experiment OOjs UI icon edit-ltr-progressive.svg
Location(s)Puna de Atacama
Coordinates 24°11′32″S66°28′29″W / 24.1921°S 66.4747°W / -24.1921; -66.4747 Coordinates: 24°11′32″S66°28′29″W / 24.1921°S 66.4747°W / -24.1921; -66.4747 OOjs UI icon edit-ltr-progressive.svg
Wavelength 150, 220 GHz (2.0, 1.4 mm)
First light 2019  OOjs UI icon edit-ltr-progressive.svg
Telescope style cosmic microwave background experiment
radio interferometer  OOjs UI icon edit-ltr-progressive.svg
Angular resolution 23.5 arcminute  OOjs UI icon edit-ltr-progressive.svg
Website www.qubic.org.ar OOjs UI icon edit-ltr-progressive.svg
Relief Map of Argentina.jpg
Red pog.svg
Location of Qubic experiment
  Commons-logo.svg Related media on Commons

QUBIC is a cosmology project to study cosmic inflation by measuring the B-modes of the polarization of the Cosmic Microwave Background (CMB), by observing the sky with a millimeter wave radio telescope interferometer. It uses bolometric interferometry, which combines the advantages of interferometry (reduction of systematic errors) and those of the bolometer detectors (high signal sensitivity). [1] QUBIC observes the sky at two frequencies, 150 and 220 GHz, so that it can separate the cosmological signal from foreground emission, in particular thermal dust emission. [2]

Contents

The QUBIC project began in 2008 with the merger of BRAIN and MBI projects. A technical demonstrator of the instrument is being manufactured and should be tested in France in 2017.

On 26 October 2022 the first module was installed and began operating [3] . [1]

QUBIC is an international collaboration involving universities and laboratories in Ireland, France, Italy, Argentina, the U.K. and the U.S.A. [1]

Observing instrument

The observing instrument is a millimeter wave interferometer contained in a cryostat which is cooled to 4K with pulse tube coolers, to avoid contaminating the received signal with thermal radiation. The millimeter waves pass through a 45 cm polyethylene window in the cryostat and then through a rotating half-wave plate which modulates the polarization, followed by a polarizing grid which selects one of the two polarizing angles. The radiation then passes through an array of 400 microwave horns which

Observing site

Since millimeter waves are absorbed by water vapor in the atmosphere the device must be located at high altitudes above most of the atmosphere. The instrument has been installed at the Large Latin American Millimeter Array (LLAMA) site at Alto de Chorillo near Salta, Argentina, at an altitude of 4,825 meters (15,830 ft).

Related Research Articles

<span class="mw-page-title-main">Radio astronomy</span> Subfield of astronomy that studies celestial objects at radio frequencies

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy.

<span class="mw-page-title-main">Microwave radiometer</span>

A microwave radiometer (MWR) is a radiometer that measures energy emitted at one millimeter-to-metre wavelengths known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Large Millimeter Telescope</span>

The Large Millimeter Telescope (LMT) -officially Large Millimeter Telescope Alfonso Serrano - is the world's largest single-aperture telescope in its frequency range, built for observing radio waves in the wave lengths from approximately 0.85 to 4 mm. It has an active surface with a diameter of 50 metres (160 ft) and 1,960 square metres (21,100 sq ft) of collecting area.

<span class="mw-page-title-main">Cosmic Background Imager</span> Interferometer at Llano de Chajnantor Observatory in Chile

The Cosmic Background Imager was a 13-element interferometer perched at an elevation of 5,080 metres at Llano de Chajnantor Observatory in the Chilean Andes. It started operations in 1999 to study the cosmic microwave background radiation and ran until 2008.

<span class="mw-page-title-main">Submillimeter Array</span> Astronomical radio interferometer in Hawaii, USA

The Submillimeter Array (SMA) consists of eight 6-meter (20 ft) diameter radio telescopes arranged as an interferometer for submillimeter wavelength observations. It is the first purpose-built submillimeter interferometer, constructed after successful interferometry experiments using the pre-existing 15-meter (49 ft) James Clerk Maxwell Telescope and 10.4-meter (34.1 ft) Caltech Submillimeter Observatory as an interferometer. All three of these observatories are located at Mauna Kea Observatory on Mauna Kea, Hawaii, and have been operated together as a ten element interferometer in the 230 and 345 GHz bands. The baseline lengths presently in use range from 16 to 508 meters. The radio frequencies accessible to this telescope range from 194–408 gigahertz (1.545–0.735 mm) which includes rotational transitions of dozens of molecular species as well as continuum emission from interstellar dust grains. Although the array is capable of operating both day and night, most of the observations take place at nighttime when the atmospheric phase stability is best.

<span class="mw-page-title-main">South Pole Telescope</span> Telescope at the South Pole

The South Pole Telescope (SPT) is a 10-metre (390 in) diameter telescope located at the Amundsen–Scott South Pole Station, Antarctica. The telescope is designed for observations in the microwave, millimeter-wave, and submillimeter-wave regions of the electromagnetic spectrum, with the particular design goal of measuring the faint, diffuse emission from the cosmic microwave background (CMB). The first major survey with the SPT—designed to find distant, massive, clusters of galaxies through their interaction with the CMB, with the goal of constraining the dark energy equation of state—was completed in October 2011. In early 2012, a new camera (SPTpol) was installed on the SPT with even greater sensitivity and the capability to measure the polarization of incoming light. This camera operated from 2012–2016 and was used to make unprecedentedly deep high-resolution maps of hundreds of square degrees of the Southern sky. In 2017, the third-generation camera SPT-3G was installed on the telescope, providing nearly an order-of-magnitude increase in mapping speed over SPTpol.

<span class="mw-page-title-main">Atacama Cosmology Telescope</span> Telescope in the Atacama Desert, northern Chile

The Atacama Cosmology Telescope (ACT) is a cosmological millimeter-wave telescope located on Cerro Toco in the Atacama Desert in the north of Chile. ACT makes high-sensitivity, arcminute resolution, microwave-wavelength surveys of the sky in order to study the cosmic microwave background radiation (CMB), the relic radiation left by the Big Bang process. Located 40 km from San Pedro de Atacama, at an altitude of 5,190 metres (17,030 ft), it is one of the highest ground-based telescopes in the world.

<span class="mw-page-title-main">Llano de Chajnantor Observatory</span> Observatory

Llano de Chajnantor Observatory is the name for a group of astronomical observatories located at an altitude of over 4,800 m (15,700 ft) in the Atacama Desert of northern Chile. The site is in the Antofagasta Region approximately 50 kilometres (31 mi) east of the town of San Pedro de Atacama. The exceptionally arid climate of the area is inhospitable to humans, but creates an excellent location for millimeter, submillimeter, and mid-infrared astronomy. This is because water vapour absorbs and attenuates submillimetre radiation. Llano de Chajnantor is home to the largest and most expensive astronomical telescope project in the world, the Atacama Large Millimeter Array (ALMA). Llano de Chajnantor and the surrounding area has been designated as the Chajnantor Science Reserve by the government of Chile.

The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz in ten bands. The instrument is similar in design to the Cosmic Background Imager (CBI) and the Very Small Array (VSA). In 2001 The DASI team announced the most detailed measurements of the temperature, or power spectrum of the Cosmic microwave background (CMB). These results contained the first detection of the 2nd and 3rd acoustic peaks in the CMB, which were important evidence for inflation theory. This announcement was done in conjunction with the BOOMERanG and MAXIMA experiment. In 2002 the team reported the first detection of polarization anisotropies in the CMB.

<span class="mw-page-title-main">Spider (polarimeter)</span>

Spider is a balloon-borne experiment designed to search for primordial gravitational waves imprinted on the cosmic microwave background (CMB). Measuring the strength of this signal puts limits on inflationary theory.

<span class="mw-page-title-main">Archeops</span>

Archeops was a balloon-borne instrument dedicated to measuring the Cosmic microwave background (CMB) temperature anisotropies. The study of this radiation is essential to obtain precise information on the evolution of the Universe: density, Hubble constant, age of the Universe, etc. To achieve this goal, measurements were done with devices cooled down at 100mK temperature placed at the focus of a warm telescope. To avoid atmospheric disturbance the whole apparatus is placed on a gondola below a helium balloon that reaches 40 km altitude.

<span class="mw-page-title-main">QUIET</span>

QUIET was an astronomy experiment to study the polarization of the cosmic microwave background radiation. QUIET stands for Q/U Imaging ExperimenT. The Q/U in the name refers to the ability of the telescope to measure the Q and U Stokes parameters simultaneously. QUIET was located at an elevation of 5,080 metres at Llano de Chajnantor Observatory in the Chilean Andes. It began observing in late 2008 and finished observing in December 2010.

<span class="mw-page-title-main">BICEP and Keck Array</span> Series of cosmic microwave background (CMB) experiments at the South Pole

BICEP and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the B-mode of the CMB. The experiments have had five generations of instrumentation, consisting of BICEP1, BICEP2, the Keck Array, BICEP3, and the BICEP Array. The Keck Array started observations in 2012 and BICEP3 has been fully operational since May 2016, with the BICEP Array beginning installation in 2017/18.

<span class="mw-page-title-main">POLARBEAR</span>

POLARBEAR is a cosmic microwave background polarization experiment located in the Atacama Desert of northern Chile in the Antofagasta Region. The POLARBEAR experiment is mounted on the Huan Tran Telescope (HTT) at the James Ax Observatory in the Chajnantor Science Reserve. The HTT is located near the Atacama Cosmology Telescope on the slopes of Cerro Toco at an altitude of nearly 5,200 m (17,100 ft).

<span class="mw-page-title-main">C-Band All Sky Survey</span>

The C-Band All Sky Survey (C-BASS) is a radio astronomy project that aims to map the entire sky in the C Band (5 GHz). It has been conducted on two radio telescopes, one operating in the Karoo in South Africa, the other at Owens Valley Radio Observatory in California.

<span class="mw-page-title-main">Cosmology Large Angular Scale Surveyor</span>

The Cosmology Large Angular Scale Surveyor (CLASS) is an array of microwave telescopes at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. The CLASS experiment aims to improve our understanding of cosmic dawn when the first stars turned on, test the theory of cosmic inflation, and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB) over 65% of the sky at multiple frequencies in the microwave region of the electromagnetic spectrum.

<span class="mw-page-title-main">Large Latin American Millimeter Array</span>

The Large Latin American Millimeter Array (LLAMA) is a single-dish 12 m Nasmyth optics antenna which is under construction in the Puna de Atacama desert in the Province of Salta, Argentina. The primary mirror accuracy will allow observation from 40 GHz up to 900 GHz. It is also planned to install a bolometer camera at millimeter wavelengths. After installation it will be able to join other similar instruments to perform Very Large Base Line Interferometry or to work in standalone mode. Financial support is provided by the Argentinian and Brazilian governments. The total cost of construction, around US$20 million, and operation as well as the telescope time use will be shared equally by the two countries. Construction planning started in July 2014 after the formal signature of an agreement between the main institutions involved.

<span class="mw-page-title-main">Atacama B-Mode Search</span>

The Atacama B-Mode Search (ABS) was an experiment to test the theory of cosmic inflation and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB). ABS was located at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. ABS began observations in February 2012 and completed observations in October 2014.

<span class="mw-page-title-main">Simons Observatory</span>

The Simons Observatory is located in the high Atacama Desert in Northern Chile inside the Chajnator Science Preserve, at an altitude of 5,200 meters (17,000 ft). The Atacama Cosmology Telescope (ACT) and the Simons Array are located nearby and these experiments are currently making observations of the Cosmic Microwave Background (CMB). Their goals are to study how the universe began, what it is made of, and how it evolved to its current state. The Simons Observatory shares many of the same goals but aims to take advantage of advances in technology to make far more precise and diverse measurements. In addition, it is envisaged that many aspects of the Simons Observatory will be pathfinders for the future CMB-S4 array.

References

  1. 1 2 3 "QUBIC Home" . Retrieved 6 December 2019.
  2. "QUBIC instrument" . Retrieved 14 June 2017.
  3. "QUBIC Installed and In Operation". Qubic Project. Qubic Project. Retrieved 24 November 2022.