The Huge Large Quasar Group, (Huge-LQG, also called U1.27) is a possible structure or pseudo-structure of 73 quasars, referred to as a large quasar group, that measures about 4 billion light-years across. At its discovery, it was identified as the largest and the most massive known structure in the observable universe, [1] [2] [3] though it has been superseded by the Hercules–Corona Borealis Great Wall at 10 billion light-years. [4] There are also issues about its structure (see Dispute section below).
Roger G. Clowes, together with colleagues from the University of Central Lancashire in Preston, United Kingdom, had reported on January 11, 2013 a grouping of quasars within the vicinity of the constellation Leo. They used data from the DR7QSO catalogue of the comprehensive Sloan Digital Sky Survey, a major multi-imaging and spectroscopic redshift survey of the sky. They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement. News about the structure's announcement spread worldwide, and has received great attention from the scientific community.
The Huge-LQG was estimated to be about 1.24 Gpc in length, by 640 Mpc and 370 Mpc on the other dimensions, and contains 73 quasars, respectively. [5] Quasars are very luminous active galactic nuclei, thought to be supermassive black holes feeding on matter. Since they are only found in dense regions of the universe, quasars can be used to find overdensities of matter within the universe. It has the approximate binding mass of 6.1×1018 (6.1 trillion (long scale) or 6.1 quintillion (short scale)) M☉. The Huge-LQG was initially named U1.27 due to its average redshift of 1.27 (where the "U" refers to a connected unit of quasars), [3] placing its distance at about 9 billion light-years from Earth. [6]
The Huge-LQG is 615 Mpc from the Clowes–Campusano LQG (U1.28), a group of 34 quasars also discovered by Clowes in 1991.
In Clowes' initial announcement of the structure, he has reported that the structure has contradicted the cosmological principle. The cosmological principle implies that at sufficiently large scales, the universe is approximately homogeneous, meaning that the statistical fluctuations in quantities such as the matter density between different regions of the universe are small. However, different definitions exist for the homogeneity scale above which these fluctuations may be considered sufficiently small, and the appropriate definition depends on the context in which it is used. Jaswant Yadav et al. have suggested a definition of the homogeneity scale based on the fractal dimension of the universe; they conclude that, according to this definition, an upper limit for the homogeneity scale in the universe is 260/h Mpc. [7] Some studies that have attempted to measure the homogeneity scale according to this definition have found values in the range 70–130/h Mpc. [8] [9] [10]
The Sloan Great Wall, discovered in 2003, has a length of 423 Mpc, [11] which is marginally larger than the homogeneity scale as defined above.
The Huge-LQG is three times longer than, and twice as wide as the Yadav et al. upper limit to the homogeneity scale, and has therefore been claimed to challenge our understanding of the universe on large scales. [3]
However, due to the existence of long-range correlations, it is known that structures can be found in the distribution of galaxies in the universe that extend over scales larger than the homogeneity scale. [12]
One of the questions that arose after the discovery of the Huge-LQG was regarding the method used in its identification. In the initial paper by Clowes et al., the standard used was statistical friend-of-friends method, which has also been used to identify other similar LQGs.
This method has been put into question in a paper by Seshadri Nadathur from the University of Bielefeld. By utilizing a new map that includes all the quasars in the region (including those not included from the 73 quasars of the group), the presence of a structure became less noticeable.
After performing a number of statistical analyses on the quasar data, and finding extreme changes in the Huge-LQG membership and shape with small changes in the cluster finding parameters, he determined the probability that apparent clusters the size of the Huge-LQG would appear in a random assortment of quasars, by utilizing the similar friends-of-friends method originally used. Using a Monte Carlo method of at least a thousand runs, he generated a set of random points in three-dimensional space and identified 10,000 regions identical in size to that studied by Clowes, and filled them with randomly distributed quasars with the same position statistics as did the actual quasars in the sky. [10] The original method by Clowes produces at least a thousand clusterings identical to the Huge-LQG, even on regions where one should expect the distribution to be truly random. The data is supporting the study of the homogeneity scale by Yadav et al., [7] and that there is, therefore, no challenge to the cosmological principle. The identification of the Huge-LQG, together with the clusterings identified by Nadathur, is therefore referred to be false positive identifications or errors due to a miscalculation of the statistical measurement used, finally arriving at the conclusion that the Huge-LQG is not a real structure at all.
Nevertheless, Clowes et al. found independent support for the reality of the structure from its coincidence with Mg II absorbers (once-ionised magnesium gas, commonly used to probe distant galaxies). The Mg II gas suggests that the Huge-LQG is associated with an enhancement of the mass, rather than being a false positive identification. This point is not discussed by the critical paper. [10]
Further support for the reality of the Huge-LQG comes from the work of Hutsemékers et al. [13] in September 2014. They measured the polarization of quasars in the Huge-LQG and found "a remarkable correlation" of the polarization vectors on scales larger than 500 Mpc.
In physical cosmology, the Copernican principle states that humans are not privileged observers of the universe, that observations from the Earth are representative of observations from the average position in the universe. Named for Copernican heliocentrism, it is a working assumption that arises from a modified cosmological extension of Copernicus' argument of a moving Earth.
A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away. For this purpose, the recessional velocity of a galaxy is typically determined by measuring redshift, a shift in the light it emits toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to work published by Edwin Hubble in 1929.
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang.
The observable universe is a spherical region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:
Redshift quantization, also referred to as redshift periodicity, redshift discretization, preferred redshifts and redshift-magnitude bands, is the hypothesis that the redshifts of cosmologically distant objects tend to cluster around multiples of some particular value.
The Millennium Run, or Millennium Simulation is a computer N-body simulation used to investigate how the distribution of matter in the Universe has evolved over time, in particular, how the observed population of galaxies was formed. It is used by scientists working in physical cosmology to compare observations with theoretical predictions.
The Sloan Great Wall (SGW) is a cosmic structure formed by a giant wall of galaxies. Its discovery was announced from Princeton University on October 20, 2003, by J. Richard Gott III, Mario Jurić, and their colleagues, based on data from the Sloan Digital Sky Survey.
In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales. More generally, it relates to the usage or appearance of fractals in the study of the universe and matter. A central issue in this field is the fractal dimension of the universe or of matter distribution within it, when measured at very large or very small scales.
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters. These massive, thread-like formations can commonly reach 50/h to 80/h megaparsecs —with the largest found to date being the Hercules-Corona Borealis Great Wall at around 3 gigaparsecs (9.8 Gly) in length—and form the boundaries between voids. Due to the accelerating expansion of the universe, the individual clusters of gravitationally bound galaxies that make up galaxy filaments are moving away from each other at an accelerated rate; in the far future they will dissolve.
The Pisces–Cetus Supercluster Complex is a galaxy filament. It includes the Laniakea Supercluster which contains the Virgo Supercluster lobe which in turn contains the Local Group, the galaxy cluster that includes the Milky Way. This filament is adjacent to the Perseus–Pegasus Filament. Astronomer R. Brent Tully of the University of Hawaii's Institute of Astronomy identified the Complex in 1987.
In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.
A large quasar group (LQG) is a collection of quasars that form what are thought to constitute the largest astronomical structures in the observable universe. LQGs are thought to be precursors to the sheets, walls and filaments of galaxies found in the relatively nearby universe.
The Clowes–Campusano LQG is a large quasar group, consisting of 34 quasars and measuring about 2 billion light-years across. It is one of the largest known superstructures in the observable universe. It is located near the larger Huge-LQG. It was discovered by the astronomers Roger Clowes and Luis Campusano in 1991.
U1.11 is a large quasar group located in the constellations of Leo and Virgo. It is one of the largest LQG's known, with the estimated maximum diameter of 780 Mpc and contains 38 quasars. It was discovered in 2011 during the course of the Sloan Digital Sky Survey. Until the discovery of the Huge-LQG in November 2012, it was the largest known structure in the universe, beating Clowes–Campusano LQG's 20-year record as largest known structure at the time of its discovery.
The Big Ring is a ring-shaped large-scale structure formed by galaxies and galaxy clusters near the constellation Boötes with a diameter of 1.3 billion light years, located 9.2 billion light years away. It was discovered in 2024 by Alexia Lopez, a PhD student at the University of Central Lancashire. In 2021, she discovered the Giant Arc, a similar structure located in the same region. It is a significant astronomical discovery, as it challenges the Cosmological Principle. Currently, there is no known cause for its formation within our current understanding of the universe. The Big Ring is the seventh large structure discovered that contradicts the understanding of smooth matter distribution across the largest scale of the universe.