List of largest cosmic structures

Last updated

Large-scale structure of light distribution in the universe.jpg
Galaxy filaments form massive, thread-like structures on the order of millions of light-years. Computer simulation.

This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres).

Contents

This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension.

This list refers only to coupling of matter with defined limits, and not the coupling of matter in general (such as, for example, the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.

There are some reasons to be cautious about this list:

List of largest structures

List of largest voids

Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.

A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.

See also

Related Research Articles

<span class="mw-page-title-main">Copernican principle</span> Principle that humans are not privileged observers of the universe

In physical cosmology, the Copernican principle states that humans are not privileged observers of the universe, that observations from the Earth are representative of observations from the average position in the universe. Named for Copernican heliocentrism, it is a working assumption that arises from a modified cosmological extension of Copernicus' argument of a moving Earth.

<span class="mw-page-title-main">Supercluster</span> Large group of smaller galaxy clusters or galaxy groups

A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group, which in turn is part of the Virgo Supercluster, which is part of the Laniakea Supercluster, which is part of the Pisces–Cetus Supercluster Complex. The large size and low density of superclusters means that they, unlike clusters, expand with the Hubble expansion. The number of superclusters in the observable universe is estimated to be 10 million.

<span class="mw-page-title-main">Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure</span>

The following is a timeline of galaxies, clusters of galaxies, and large-scale structure of the universe.

<span class="mw-page-title-main">Hydra–Centaurus Supercluster</span> Former galaxy supercluster

The Hydra–Centaurus Supercluster, or the Hydra and Centaurus Superclusters, was a previously defined supercluster in two parts, which prior to the identification of Laniakea Supercluster in 2014 is the closest neighbour of the former Virgo Supercluster. Its center is located about 39 Mpc (127 Mly) away, with it extending to a maximum distance of around 69 Mpc (225 Mly).

<span class="mw-page-title-main">Lambda-CDM model</span> An anomaly in astronomical observations of the Cosmic Microwave Background

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">Sloan Great Wall</span> Cosmic structure formed by a galaxy filament

The Sloan Great Wall (SGW) is a cosmic structure formed by a giant wall of galaxies. Its discovery was announced from Princeton University on October 20, 2003, by J. Richard Gott III, Mario Jurić, and their colleagues, based on data from the Sloan Digital Sky Survey.

<span class="mw-page-title-main">Pavo–Indus Supercluster</span> Neighboring supercluster in the constellations Pavo, Indus and Telescopium

The Pavo–Indus Supercluster is a neighboring supercluster located about 60–70 Mpc (196–228 Mly) away in the constellations of Pavo, Indus, and Telescopium. The supercluster contains three main clusters, Abell 3656, Abell 3698, and Abell 3742.

<span class="mw-page-title-main">CMB cold spot</span> Region in space

The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 μK (0.00007 K) colder than the average CMB temperature, whereas the root mean square of typical temperature variations is only 18 μK. At some points, the "cold spot" is 140 μK colder than the average CMB temperature.

<span class="mw-page-title-main">Galaxy filament</span> Largest structures in the universe, made of galaxies

In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters. These massive, thread-like formations can commonly reach 50 to 80 megaparsecs —with the largest found to date being the Hercules-Corona Borealis Great Wall at around 3 gigaparsecs (9.8 Gly) in length—and form the boundaries between voids. Due to the accelerating expansion of the universe, the individual clusters of gravitationally bound galaxies that make up galaxy filaments are moving away from each other at an accelerated rate; in the far future they will dissolve.

<span class="mw-page-title-main">Steady-state model</span> Model of the universe – alternative to the Big Bang model

In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.

<span class="mw-page-title-main">Local Sheet</span> Nearby extragalactic region of space

The Local Sheet in astronomy is a nearby extragalactic region of space where the Milky Way, the members of the Local Group and other galaxies share a similar peculiar velocity. This region lies within a radius of about 7 Mpc (23 Mly), 0.46 Mpc (1.5 Mly) thick, and galaxies beyond that distance show markedly different velocities. The Local Group has only a relatively small peculiar velocity of 66 km⋅s−1 with respect to the Local Sheet. Typical velocity dispersion of galaxies is only 40 km⋅s−1 in the radial direction. Nearly all nearby bright galaxies belong to the Local Sheet. The Local Sheet is part of the Local Volume and is in the Virgo Supercluster. The Local Sheet forms a wall of galaxies delineating one boundary of the Local Void.

<span class="mw-page-title-main">Large quasar group</span> Large astronomical structure

A large quasar group (LQG) is a collection of quasars that form what are thought to constitute the largest astronomical structures in the observable universe. LQGs are thought to be precursors to the sheets, walls and filaments of galaxies found in the relatively nearby universe.

<span class="mw-page-title-main">Huge-LQG</span> Possible astronomical structure

The Huge Large Quasar Group, is a possible structure or pseudo-structure of 73 quasars, referred to as a large quasar group, that measures about 4 billion light-years across. At its discovery, it was identified as the largest and the most massive known structure in the observable universe, though it has been superseded by the Hercules–Corona Borealis Great Wall at 10 billion light-years. There are also issues about its structure.

<span class="mw-page-title-main">Hercules–Corona Borealis Great Wall</span> Largest known structure in the observable universe

The Hercules–Corona Borealis Great Wall (HCB) or simply the Great Wall is a galaxy filament that is the largest known structure in the observable universe, measuring approximately 10 billion light-years in length. This massive superstructure is a region of the sky seen in the data set mapping of gamma-ray bursts (GRBs) that has been found to have a concentration of similarly distanced GRBs that is unusually higher than the expected average distribution. It was discovered in early November 2013 by a team of American and Hungarian astronomers led by István Horváth, Jon Hakkila and Zsolt Bagoly while analyzing data from the Swift Gamma-Ray Burst Mission, together with other data from ground-based telescopes. It is the largest known formation in the universe, exceeding the size of the Huge-LQG by about a factor of two.

U1.11 is a large quasar group located in the constellations of Leo and Virgo. It is one of the largest LQG's known, with the estimated maximum diameter of 780 Mpc and contains 38 quasars. It was discovered in 2011 during the course of the Sloan Digital Sky Survey. Until the discovery of the Huge-LQG in November 2012, it was the largest known structure in the universe, beating Clowes–Campusano LQG's 20-year record as largest known structure at the time of its discovery.

The KBC Void is an immense, comparatively empty region of space, named after astronomers Ryan Keenan, Amy Barger, and Lennox Cowie, who studied it in 2013. The existence of a local underdensity has been the subject of many pieces of literature and research articles.

The Giant GRB Ring is a ring of 9 gamma-ray bursts (GRBs) that may be associated with one of the largest known cosmic structures. It was discovered in July 2015 by a team of Hungarian and American astronomers led by L.G. Balazs while analyzing data from different gamma-ray and X-ray telescopes, in particular the Swift Spacecraft.

<span class="mw-page-title-main">NeVe 1</span> Galaxy in the constellation Ophiuchus

NeVe 1 is a supergiant elliptical galaxy, which is the central, dominant member and brightest cluster galaxy (BCG) of the Ophiuchus Cluster. It lies at a distance of about 411 million light-years away from Earth and is located behind the Zone of Avoidance region in the sky. It is the host galaxy of the Ophiuchus Supercluster eruption, the most energetic astronomical event known.

References

  1. Horvath, Istvan; Bagoly, Zsolt; Hakkila, Jon; Tóth, L. Viktor (2014). "Anomalies in the GRB spatial distribution". Proceedings of Science: 78. arXiv: 1507.05528 . Bibcode:2014styd.confE..78H. doi: 10.22323/1.233.0078 .
  2. Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). "Possible structure in the GRB sky distribution at redshift two". Astronomy & Astrophysics. 561: id.L12. arXiv: 1401.0533 . Bibcode:2014A&A...561L..12H. doi:10.1051/0004-6361/201323020. S2CID   24224684.
  3. Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901)". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv: 1311.1104 . Bibcode:2013arXiv1311.1104H.
  4. Klotz, Irene (2013-11-19). "Universe's Largest Structure is a Cosmic Conundrum". discovery. Archived from the original on 2015-03-25. Retrieved 2013-11-22.
  5. Christian, Sam (2020-07-11). "Re-examining the evidence of the Hercules–Corona Borealis Great Wall". Monthly Notices of the Royal Astronomical Society. 495 (4): 4291–4296. arXiv: 2006.00141 . doi: 10.1093/mnras/staa1448 . ISSN   0035-8711. S2CID   219177572.
  6. Ukwatta, T. N.; Woźniak, P. R. (2016-01-01). "Investigation of redshift- and duration-dependent clustering of gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 455 (1): 703–711. arXiv: 1507.07117 . doi: 10.1093/mnras/stv2350 . ISSN   0035-8711.
  7. Horvath, I.; Szecsi, D.; Hakkila, J.; Szabo, A.; Racz, I.I.; Toth, L.V.; Pinter, S.; Bagoly, Z. (2020-08-22). "The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe?". Monthly Notices of the Royal Astronomical Society. 498 (2): 2544–2553. arXiv: 2008.03679 . doi: 10.1093/mnras/staa2460 . ISSN   0035-8711.
  8. 1 2 3 Balazs, L. G.; Bagoly, Z.; Hakkila, J. E.; Horvath, I.; Kobori, J.; Racz, I. I.; Toth, L. V. (2015-08-05). "A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs". Monthly Notices of the Royal Astronomical Society. 452 (3): 2236–2246. arXiv: 1507.00675 . Bibcode:2015MNRAS.452.2236B. doi: 10.1093/mnras/stv1421 . S2CID   109936564.
  9. Aron, Jacob (2013). "Largest structure challenges Einstein's smooth cosmos". New Scientist. 217 (2900): 13. Bibcode:2013NewSc.217...13A. doi:10.1016/S0262-4079(13)60143-8 . Retrieved 14 January 2013.
  10. "Astronomers discover the largest structure in the universe". Royal astronomical society. Archived from the original on 2013-01-14. Retrieved 2013-01-13.
  11. Clowes, Roger; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11). "A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 1211 (4): 6256. arXiv: 1211.6256 . Bibcode:2013MNRAS.429.2910C. doi: 10.1093/mnras/sts497 . S2CID   486490.
  12. "Giant arc stretching-1.3 billion light-years across the cosmos shouldn't exist". Archived from the original on 2021-06-28. Retrieved 2021-06-16.
  13. Pomarède, Daniel; et al. (10 July 2020). "Cosmicflows-3: The South Pole Wall". The Astrophysical Journal . 897 (2): 133. arXiv: 2007.04414 . Bibcode:2020ApJ...897..133P. doi: 10.3847/1538-4357/ab9952 . S2CID   220425419.
  14. Pomerede, Daniel; et al. (January 2020). "The South Pole Wall". Harvard University . p. 453.01. Bibcode:2020AAS...23545301P.
  15. "Astronomers map massive structure beyond Laniakea Supercluster". University of Hawaii . 10 July 2020. Retrieved 10 July 2020.
  16. Overbye, Dennis (10 July 2020). "Beyond the Milky Way, a Galactic Wall – Astronomers have discovered a vast assemblage of galaxies hidden behind our own, in the "zone of avoidance"". The New York Times . Retrieved 10 July 2020.
  17. Mann, Adam (10 July 2020). "Astronomers discover South Pole Wall, a gigantic structure stretching 1.4 billion light-years across". Live Science . Retrieved 10 July 2020.
  18. Starr, Michelle (14 July 2020). "A Giant 'Wall' of Galaxies Has Been Found Stretching Across The Universe". ScienceAlert.com. Retrieved 19 July 2020.
  19. 1 2 Shimawaka, Rhythm; Okabe, Nobuhiro; Shirasaki, Masat; Tanaka, Masayuki (22 November 2022). "King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at z = 0.55 using the subaru hyper suprime-cam" . Monthly Notices of the Royal Astronomical Society: Letters. 519 (1): L45 –L50. arXiv: 2211.11970 . Bibcode:2023MNRAS.519L..45S. doi: 10.1093/mnrasl/slac150 . ISSN   1745-3933. S2CID   253761264.
  20. Nadathur, Seshadri (10 July 2018). "Seeing patterns in noise: Gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society. 434 (1): 398–406. arXiv: 1306.1700 . Bibcode:2013MNRAS.434..398N. doi: 10.1093/mnras/stt1028 . S2CID   119220579.
  21. Lietzen, H.; Tempel, E.; Liivamägi, L. J. (20 March 2016). "Discovery of a massive supercluster system at z ~ 0.47". Astronomy & Astrophysics. 588: L4. arXiv: 1602.08498 . Bibcode:2016A&A...588L...4L. doi:10.1051/0004-6361/201628261. S2CID   56126854.
  22. "News | IUCAA". www.iucaa.in.
  23. 1 2 3 4 5 6 7 8 9 10 11 Komberg, Boris V.; Kravtsov, Andrey V.; Lukash, Vladimir N. (1996). "The search and investigation of the Large Groups of Quasars". Monthly Notices of the Royal Astronomical Society. 282 (3): 2090. arXiv: astro-ph/9602090 . Bibcode:1996MNRAS.282..713K. doi: 10.1093/mnras/282.3.713 . S2CID   14700144.
  24. 1 2 3 4 5 6 7 8 9 10 11 12 R. G. Clowes. "Large Quasar Groups – A Short Review". 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232. 2001; Astronomical Society of the Pacific; ISBN   1-58381-065-X; Bibcode : 2001ASPC..232..108C.
  25. Newman, Peter R. (1999). Large groups of quasars in an ultraviolet-excess survey (Thesis). University of Central Lancashire. Bibcode:1999PhDT..........N. doi:10.17030/uclan.thesis.00020658.
  26. Sankhyayan, Shishir; Okabe, Joydeep; Tempel, Elmo; More, Surhud; Einasto, Maret; Dabhade, Pratik; Raychaudhury, Somak; Athreya, Ramana; Heinämäki, Pekka (13 November 2023). "Identification of Superclusters and Their Properties in the Sloan Digital Sky Survey Using the WHL Cluster Catalog". The Astrophysical Journal. 958 (1): 62. arXiv: 2309.06251 . Bibcode:2023ApJ...958...62S. doi: 10.3847/1538-4357/acfaeb .
  27. Webster, Adrian (May 1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi: 10.1093/mnras/199.3.683 .
  28. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv: 1602.02771 . Bibcode:2017ApJ...835..161M. doi: 10.3847/1538-4357/835/2/161 . S2CID   119098071.
  29. Kenworthy, W. D'Arcy; Scolnic, Dan; Riess, Adam (2019-04-24). "The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant". The Astrophysical Journal. 875 (2): 145. arXiv: 1901.08681 . Bibcode:2019ApJ...875..145K. doi: 10.3847/1538-4357/ab0ebf . ISSN   1538-4357. S2CID   119095484.
  30. Haslbauer, Moritz; Banik, Indranil; Kroupa, Pavel (October 23, 2020). "The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution". Monthly Notices of the Royal Astronomical Society. 499 (2): 2845–2883. arXiv: 2009.11292 . Bibcode:2020MNRAS.499.2845H. doi: 10.1093/mnras/staa2348 .
  31. Bahcall, N. A.; Soneira, R. M. (1982) "An approximately 300 MPC void of rich clusters of galaxies" (PDF) Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 419-423. Bibcode : 1982ApJ...262..419B doi : 10.1086/160436
  32. 1 2 Einasto, Jaan; Einasto, Maret; Gramann, Mirt (1989) "Structure and formation of superclusters. IX – Self-similarity of voids" (PDF). Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 238, May 1, 1989, pp. 155–177. Bibcode : 1989MNRAS.238..155E.
  33. S. A. Pustilnik (SAO), D. Engels (Hamburg), A. Y. Kniazev (ESO, SAO), A. G. Pramskij, A. V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005). ["HS 2134+0400 – new very metal-poor galaxy, a representative of void population?"]. arXiv:astro-ph/0508255v1. Bibcode : 2006AstL...32..228P doi : 10.1134/S1063773706040025.