List of largest stars

Last updated

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700  km ; 432,300  mi). [1]

Contents

The Sun, the orbit of Earth, Jupiter, and Neptune, compared to four stars (Pistol Star, Rho Cassiopeiae, Betelgeuse, and VY Canis Majoris) Rho Cassiopeiae Sol VY Canis Majoris.png
The Sun, the orbit of Earth, Jupiter, and Neptune, compared to four stars (Pistol Star, Rho Cassiopeiae, Betelgeuse, and VY Canis Majoris)

Overview

Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants. [2]

Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R, comparable to some of the largest known black holes. [3] [4] [5]

Angular diameters

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few supergiants can be occulted by the Moon, including Antares and 119 Tauri. Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.[ citation needed ]

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.[ citation needed ]

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

Lists

The following lists show the largest known stars based on the host galaxy.

Milky Way

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
GalaxyMethod [a] Notes
Theoretical limit of star size (Large Magellanic Cloud)≳1,550 [9] L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3545 K.
Reported for reference
HV 8881,477 [102] –1,584 [103] Large Magellanic CloudL/Teff
HD 269551 A1,439 [104] Large Magellanic CloudL/Teff
HV 124631,420 [104] Large Magellanic CloudL/Teff
IRAS 05280–6910 1,367 [105] Large Magellanic CloudL/TeffThe most reddened object in the Large Magellanic Cloud. [103]
MSX LMC 5971,278 [106] –1,444 [103] Large Magellanic CloudL/Teff
OGLE BRIGHT-LMC-LPV-521,275 [104] –1,384 [106] Large Magellanic Cloud
HV 28341,253 [106] Large Magellanic CloudL/Teff
LMC 1450131,243 [104] Large Magellanic CloudL/Teff
IRAS 05346-69491,211 [107] Large Magellanic CloudL/TeffIt has an estimated mass-loss rate of 0.0017 M (566 Earths) per year, the highest for any star. [107]
HV 56181,163 [104] Large Magellanic CloudL/Teff
HV 22421,160 [108]  1,180 [104] Large Magellanic CloudL/Teff
LMC 253201,156 [104] Large Magellanic CloudL/Teff
SMC 185921,129 [104] Small Magellanic CloudL/Teff
MSX SMC 0181,119 [107] Small Magellanic CloudL/Teff
LMC2521,117 [104] –1,164 [106] Large Magellanic Cloud
LMC0451,112 [104] Large Magellanic CloudL/Teff
SP77 21-121,103 [104] Large Magellanic CloudL/Teff
MSX LMC 8101,104 [106] Large Magellanic CloudL/Teff
WOH S3381,100 [108] Large Magellanic CloudL/Teff
LMC 1360421,092 [104] Large Magellanic CloudL/Teff
LMC 1751881,090 [104] –1,317 [106] Large Magellanic Cloud
IRAS 04516-69021,085 [105] Large Magellanic CloudL/Teff
WOH S2741,071 [104] Large Magellanic CloudL/Teff
[W60] D441,063 [104] Large Magellanic CloudL/Teff
HV 122331,057 [104] Large Magellanic CloudL/Teff
MSX LMC 5891,051 [106] Large Magellanic CloudL/Teff
Theoretical limit of star size (Small Magellanic Cloud)≳1,050 [9] L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3850 K.
Reported for reference
MSX LMC 9471,050 [106] Large Magellanic CloudL/Teff
LMC 1442171,039 [104] Large Magellanic Cloud
SP77 31-181,038 [104] Large Magellanic CloudL/Teff
IRAS 05402-69561,032 [105] Large Magellanic CloudL/Teff
IRAS 04509-69221,027 [105] –1,187 [106] Large Magellanic CloudL/Teff
HV 22551,027 [104] –1,236 [106] Large Magellanic Cloud
TRM 361,019 [104] Large Magellanic CloudL/Teff
LMC 1755491,005 [104] Large Magellanic CloudL/Teff
TRM 891,004 [104] –1,526 [106] Large Magellanic Cloud
B90 (WOH S264)1000+70
−80
 1,210 [109]
Large Magellanic CloudL/TeffHas an unusually high metallicity and velocity. [109] Often referred to as its SIMBAD designation [W60] B90.
Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from the Titanium(II) oxide bands.
HV 24501,000+2
−1
[110] –1,071 [110]
Large Magellanic CloudL/TeffA yellow hypergiant.
LMC 149767994 [104] Large Magellanic CloudL/Teff
UCAC2 2674864 (HV 2834)990+115
−100
[111]
Large Magellanic CloudL/Teff
HV 996988 [104] –1,176 [106] Large Magellanic Cloud
W61 8–88986 [104] Large Magellanic CloudL/Teff
HV 2362982 [104]  1,030 [108] Large Magellanic CloudL/Teff
MG73 59979 [112] Large Magellanic CloudL/TeffA yellow supergiant.
HD 268757979 [112] Large Magellanic CloudL/TeffA G8 yellow hypergiant.
SMC 56389976 [104] Small Magellanic CloudL/Teff
LMC 136404974 [104] Large Magellanic CloudL/Teff
SP77 46-32973 [104] –1,133 [106] Large Magellanic Cloud
HV 2084967 [104] –1,083 [106] Small Magellanic Cloud
WOH S74965 [104] –1,014 [106] Large Magellanic CloudL/Teff
SMC 10889963 [104] Small Magellanic CloudL/Teff
TRM 67951 [104] Large Magellanic CloudL/Teff
LHA 120-S 26951 [104] Large Magellanic CloudL/Teff
LMC 139413951 [104] Large Magellanic CloudL/Teff
TRM 87947 [104] Large Magellanic CloudL/Teff
LMC 148035947 [104] Large Magellanic CloudL/Teff
HV 12802946 [104] –1,377 [106] Large Magellanic Cloud
SMC 018136945 [104] Small Magellanic CloudL/Teff
LMC 142202943 [104] Large Magellanic CloudL/Teff
LMC 147199939 [104]  990 [108] Large Magellanic CloudL/Teff
SP77 37-24936 [104] Large Magellanic CloudL/Teff
LMC 148381932 [104] Large Magellanic CloudL/Teff
LMC 23095926 [106] – 1,280 [104] Large Magellanic CloudL/Teff
SP77 31-16923±28 [110] Large Magellanic CloudL/TeffA yellow hypergiant.
LMC 170452920 [104] Large Magellanic CloudL/Teff
SP77 44-5918 [104] Large Magellanic CloudL/Teff
LMC 66778915 [104]  990 [108] Large Magellanic CloudL/Teff
NGC371 R20913 [113] Small Magellanic CloudL/Teff
LMC 150040911 [104] Large Magellanic CloudL/Teff
HV 2236911 [104] –971 [106] Large Magellanic CloudL/Teff
TRM 108906 [104] Large Magellanic CloudL/Teff
LMC 169142902 [104] Large Magellanic CloudL/Teff
WOH S457902±45 [114] Large Magellanic CloudL/Teff
IRAS 04498-6842 (LI-LMC 60)898 [105]  1,137 [106]  1,765, [103] 1,224 [104] Large Magellanic CloudL/TeffLower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R. [103]
LMC 135720898 [104] Large Magellanic CloudL/Teff
SMC 81961892 [104] Small Magellanic CloudL/Teff
SP77 44-19891 [104] –1,297 [106] Large Magellanic CloudL/Teff
SP77 45–49890 [104] Large Magellanic CloudL/Teff
LMC 175464892 [106] –982 [104] Large Magellanic Cloud
SMC 49478888 [104] Small Magellanic CloudL/Teff
HV 12185890+55
−65
[111]
Large Magellanic CloudL/Teff
SP77 45–53885 [106] –981 [104] Large Magellanic Cloud
LMC 170079882 [104] Large Magellanic CloudL/Teff
SMC 5092880 [104] Small Magellanic CloudL/Teff
HV 12793880+45
−65
[111]
Large Magellanic CloudL/Teff
W61 21–22877 [104] Large Magellanic CloudL/Teff
SP77 35-1877 [104] Large Magellanic CloudL/Teff
UCAC3 43-23216873 [104] Large Magellanic CloudL/Teff
HV 11423 872 [104] Small Magellanic CloudL/Teff
WOH S57875+70
−60
[111]
Large Magellanic CloudL/Teff
SP77 53-3870 [104] Large Magellanic CloudL/Teff
SP77 36-14870 [104] Large Magellanic CloudL/Teff
SP77 31-19870 [104] Large Magellanic CloudL/Teff
LMC 158646865 [104] Large Magellanic CloudL/Teff
SP77 31-20864 [104] Large Magellanic CloudL/Teff
LMC 113364864 [104] Large Magellanic CloudL/Teff
SMC 83202864 [104] Small Magellanic CloudL/Teff
LMC 175746863 [104] Large Magellanic CloudL/Teff
LMC207863 [104] Large Magellanic CloudL/Teff
SP77 29-8858 [104] Large Magellanic CloudL/Teff
SP77 54-38859 [106] –911 [104] Large Magellanic Cloud
LMC 174714855 [104] –965 [106] Large Magellanic Cloud
LMC 176135854 [104] Large Magellanic CloudL/Teff
LMC178845 [104] Large Magellanic CloudL/Teff
SP77 31-26845 [104] Large Magellanic CloudL/Teff
LMC 106201844 [104] Large Magellanic CloudL/Teff
SP77 48-13838 [104] Large Magellanic CloudL/Teff
MSX LMC 1318837 [104] Large Magellanic CloudL/Teff
SP77 28-13835 [104] Large Magellanic CloudL/Teff
LMC 143898833 [104] Large Magellanic CloudL/Teff
TYC 9161-866-1833 [104] Large Magellanic CloudL/Teff
SMC 59803829 [104] Small Magellanic CloudL/Teff
LMC 157401828 [104] Large Magellanic CloudL/Teff
SP77 39-22828 [104] Large Magellanic CloudL/Teff
WOH S52828 [104] Large Magellanic CloudL/Teff
SP77 30-22826 [104] Large Magellanic CloudL/Teff
LMC 145728826 [104] Large Magellanic CloudL/Teff
LMC 169049825 [104] Large Magellanic CloudL/Teff
SP77 46-34825 [104] Large Magellanic CloudL/Teff
LMC 177997825 [106] –867 [104] Large Magellanic Cloud
SP77 28-2825±60 [111] Large Magellanic CloudL/Teff
SP77 22-9823 [104]  850 [108] Large Magellanic CloudL/Teff
Z Doradus824±108 [114] –956 [106] Large Magellanic CloudL/Teff
WOH S421822 [104] –840 [106] Large Magellanic Cloud
LMC 72727822 [104] Large Magellanic CloudL/Teff
SP77 37-28821 [104] Large Magellanic CloudL/Teff
MSX LMC 575816 [104] –933 [106] Large Magellanic Cloud
LMC 143035815 [104] Large Magellanic CloudL/Teff
WOH S49815 [104] Large Magellanic CloudL/Teff
SP77 52-28812 [104] Large Magellanic CloudL/Teff
SHV 0520422-693821808 [104] Large Magellanic CloudL/Teff
HD 268850808 [106] –898 [104] Large Magellanic Cloud
SMC 20133809 [106] –835 [104] Small Magellanic Cloud
SMC 25888804 [104] Small Magellanic CloudL/Teff
SP77 55-20803 [104] Large Magellanic CloudL/Teff
WOH G64 ~800 [115] Large Magellanic CloudL/TeffSurrounded by a large torus-shaped dust envelope. [116] [117] Transitioned from a red supergiant into a yellow hypergiant after a potential 30 year long outburst. [115] Previously estimated to be 1,540 [118] [111] [119] [103] [120] ± 77 [118]  R
PGMW 1058800 [104] Large Magellanic CloudL/Teff
LMC 145112798 [104] Large Magellanic CloudL/Teff
SMC 47757795 [104] Small Magellanic CloudL/Teff
LMC 175709794 [104] Large Magellanic CloudL/Teff
SMC 46497794 [104] Small Magellanic CloudL/Teff
WOH S60789 [104] Large Magellanic CloudL/Teff
WOH S102789 [104] Large Magellanic CloudL/Teff
LMC 164709787 [104] Large Magellanic CloudL/Teff
SP77 31-28787 [104] Large Magellanic CloudL/Teff
TRM 73787 [106] –816 [104] Large Magellanic Cloud
SP77 31-21784 [104] Large Magellanic CloudL/Teff
SMC 8930784 [104] Small Magellanic CloudL/Teff
PMMR 62784 [104] Small Magellanic CloudL/Teff
SP77 46-31782 [104] Large Magellanic CloudL/Teff
LMC211780 [104] Large Magellanic CloudL/Teff
LMC 140403778 [104] Large Magellanic CloudL/Teff
LMC 134383778 [104] –803 [106] Large Magellanic CloudL/Teff
SP77 47-11778 [104] Large Magellanic CloudL/Teff
SP77 40-7778 [104]  810 [108] Large Magellanic CloudL/Teff
W61 19–24780+50
−70
[111]
Large Magellanic CloudL/Teff
WOH S28780 [108] Large Magellanic CloudL/Teff
LMC 141568776 [104] Large Magellanic CloudL/Teff
SP77 51-2776 [104] Large Magellanic CloudL/Teff
SP77 31–43773 [104] Large Magellanic CloudL/Teff
MSX LMC 833773 [104] –849 [106] Large Magellanic Cloud
SP77 52-32772 [104] Large Magellanic CloudL/Teff
SP77 22-10767 [104] Large Magellanic CloudL/Teff
SP77 48-6768 [121] Large Magellanic CloudL/Teff
SMC 12322765 [104] Small Magellanic CloudL/Teff
WOH S517764 [104] Large Magellanic CloudL/Teff
WOH S183763 [104] Large Magellanic CloudL/Teff
LMC256762 [104] Large Magellanic CloudL/Teff
LMC 154311762 [104] Large Magellanic CloudL/Teff
LMC 119219762 [104] Large Magellanic CloudL/Teff
WOH S452762±275 [114] Large Magellanic CloudL/Teff
MSX SMC 024761 [106] Large Magellanic CloudL/Teff
WOH S282758 [104] Large Magellanic CloudL/Teff
LMC 64048758 [104] Large Magellanic CloudL/Teff
PGMW 3160758 [104] Large Magellanic CloudL/Teff
WOH S438757±211 [114] Large Magellanic CloudL/Teff
LMC 61753755 [104] Large Magellanic CloudL/Teff
LMC 140296754 [104] Large Magellanic CloudL/Teff
WOH S478753 [104] Large Magellanic CloudL/Teff
LMC 139027751 [104]  790 [108] Large Magellanic CloudL/Teff
SP77 45-16749 [104]  800 [108] Large Magellanic CloudL/Teff
SP77 37-20749 [104] Large Magellanic CloudL/Teff
SP77 54-27750 [108]  758 [104]  800 [108] Large Magellanic CloudL/Teff
LMC 155529747 [104] Large Magellanic CloudL/Teff
LMC 143877746 [104] Large Magellanic CloudL/Teff
SMC 64663745 [104] Small Magellanic CloudL/Teff
WOH G302745 [104] Large Magellanic CloudL/Teff
TRM 65743 [104] Large Magellanic CloudL/Teff
HV 12149741 [104] –767 [106] Small Magellanic Cloud
SMC 50840740 [104] Small Magellanic CloudL/Teff
SMC 46662740 [104] –874 [106] Small Magellanic Cloud
SP77 29-11738 [104] Large Magellanic CloudL/Teff
SMC 30616737 [104] Small Magellanic CloudL/Teff
LMC 162635736 [104] Large Magellanic CloudL/Teff
SP77 39-17736 [104]  760 [108] Large Magellanic CloudL/Teff
LMC 163466734 [104] Large Magellanic CloudL/Teff
HV 2310734 [106] Large Magellanic CloudL/Teff
HD 269723734±17, [110] 814 [112] –829 [121] Large Magellanic CloudL/TeffA yellow hypergiant.
SP77 44-17732 [104] Large Magellanic CloudL/Teff
SP77 38-5a732 [104] Large Magellanic CloudL/Teff
LMC 67982730 [104] Large Magellanic CloudL/Teff
LHA 120-S 129730 [104] Large Magellanic CloudL/Teff
PMMR 64730+75
−65
[111]
Small Magellanic CloudL/Teff
SP77 51-15727 [104] Large Magellanic CloudL/Teff
LMC 168757725 [104] Large Magellanic CloudL/Teff
LMC 163007725 [104] Large Magellanic CloudL/Teff
W61 8–14724 [104] Large Magellanic CloudL/Teff
IRAS 05425-6914724 [104] Large Magellanic CloudL/Teff
SMC 55188724 [104] Small Magellanic CloudL/Teff
SP77 44-13721 [104] Large Magellanic CloudL/Teff
MSX LMC 905719 [104] Large Magellanic CloudL/Teff
LMC 147928719 [104] Large Magellanic CloudL/Teff
LH 43-15719 [104]  740 [108] Large Magellanic CloudL/Teff
PMMR 116717 [121] Small Magellanic CloudL/Teff
LMC 123778715 [104] Large Magellanic CloudL/Teff
WOH S314714 [104] Large Magellanic CloudL/Teff
SP77 61-23713 [104] Large Magellanic CloudL/Teff
WOH S230713 [104] Large Magellanic CloudL/Teff
LMC 150396710 [104] Large Magellanic CloudL/Teff
SP77 48-17709 [104] Large Magellanic CloudL/Teff
LMC 165242707 [104] Large Magellanic CloudL/Teff
SP77 51-19707 [104] Large Magellanic CloudL/Teff
LMC 170539707 [104] Large Magellanic CloudL/Teff
LMC 154729705 [104] Large Magellanic CloudL/Teff
OGLE BRIGHT-LMC-LPV-101703 [104] Large Magellanic CloudL/Teff
MSX SMC 055702 [113] 1,557+215
−130
[106]
Small Magellanic CloudL/TeffA super-AGB candidate.
LMC 168290702 [104] Large Magellanic CloudL/Teff
LMC180702 [104] Large Magellanic CloudL/Teff
SP77 45-2702 [104] Large Magellanic CloudL/Teff
SP77 48-6700+29
−28
[110]
Large Magellanic CloudL/TeffA yellow hypergiant.
The following well-known stars are listed for the purpose of comparison.
HV 2112 675 – 1,193 [122] Small Magellanic CloudL/TeffIt has been previously considered to be a possible Thorne–Żytkow object. [122]
HV 11417 673 [106] –798 [104] Small Magellanic CloudL/TeffCandidate Thorne-Zytkow object. [122]
HD 269953647 [112] –720 [121] Large Magellanic CloudL/TeffA yellow hypergiant.
HD 271182 621 [123] Large Magellanic CloudL/TeffA yellow hypergiant.
HD 33579 471 [121] Large Magellanic CloudL/TeffThe brightest star in the Large Magellanic Cloud.
S Doradus 100 [124] Large Magellanic CloudL/TeffA luminous blue variable in the S Doradus instability strip.
HD 37974 99 [125] Large Magellanic CloudL/TeffAn unusual blue hypergiant with a large dusty disk. [125]
R136a1 42.7+1.6
−0.9
[126]
Large Magellanic CloudL/TeffOne of the most luminous and most massive stars.
BAT 99-98 37.5 [127] Large Magellanic CloudL/TeffOne of the most luminous and most massive stars.
HD 5980 A24 [128] Small Magellanic CloudL/TeffA luminous blue variable and one of the most luminous stars.

Andromeda (M31) and Triangulum (M33) galaxies

List of the largest known stars in Andromeda and Triangulum galaxies
Star name Solar radii
(Sun = 1)
GalaxyMethod [a] Notes
Theoretical limit of star size (M31)≳1,750 [9] L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3625 K.
Reported for reference
LGGS J013339.28+303118.81,566 [129] Triangulum Galaxy L/Teff
Theoretical limit of star size (M33)≳1,500 [9] L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3605 K.
Reported for reference
LGGS J004428.48+415130.91,410 [130] Andromeda Galaxy L/Teff
LGGS J013418.56+303808.61,363 [129] Triangulum Galaxy L/Teff
LGGS J013414.27+303417.71,342 [129] –1,479 [104] Triangulum Galaxy L/Teff
LGGS J004514.91+413735.01,324 [104] Andromeda Galaxy L/Teff
LGGS J004125.23+411208.91,302 [104] Andromeda Galaxy L/Teff
LGGS J013350.62+303230.31,283 [104] Triangulum Galaxy L/Teff
LGGS J004312.43+413747.11,279 [104] Andromeda Galaxy L/Teff
LGGS J003951.33+405303.71,272 [104] Andromeda Galaxy L/Teff
LGGS J013416.52+305155.41,227 [104] Triangulum Galaxy L/Teff
LGGS J004416.83+411933.21,209 [104] Andromeda Galaxy L/Teff
LGGS J004531.13+414825.71,201 [104] Andromeda Galaxy L/Teff
2MASS J01343365+30465471,196 [104] Triangulum Galaxy L/Teff
LGGS J013409.63+303907.61,182 [104] Triangulum Galaxy L/Teff
LGGS J004133.18+411217.21,180 [104] Andromeda Galaxy L/Teff
LGGS J004455.90+413035.21,172 [104] Andromeda Galaxy L/Teff
LGGS J013352.96+303816.01,163 [104] Andromeda Galaxy L/Teff
LGGS J004047.22+404445.51,162 [104] Andromeda Galaxy L/Teff
LGGS J004254.18+414033.61,154 [104] Andromeda Galaxy L/Teff
LGGS J004428.48+415130.91,130 [104] Andromeda Galaxy L/Teff
LGGS J013414.27+303417.71,129 [129] Triangulum Galaxy L/Teff
LGGS J004035.08+404522.31,122 [104] Andromeda Galaxy L/Teff
LGGS J013341.98+302102.01,119 [104] Triangulum Galaxy L/Teff
LGGS J013307.37+304543.21,119 [104] Triangulum Galaxy L/Teff
LGGS J004218.33+412633.91,111 [104] Andromeda Galaxy L/Teff
LGGS J004102.54+403426.51,108 [104] Andromeda Galaxy L/Teff
LGGS J013335.90+303344.51,104 [104] Triangulum Galaxy L/Teff
LGGS J013358.54+303419.91,103 [104] Triangulum Galaxy L/Teff
LGGS J013414.49+303511.61,102 [104] Triangulum Galaxy L/Teff
LGGS J013336.64+303532.31,102 [104] –1,408 [129] Triangulum Galaxy L/Teff
LGGS J004259.34+413726.01,094 [104] Andromeda Galaxy L/Teff
LGGS J004509.98+414627.51,089 [104] Andromeda Galaxy L/Teff
LGGS J013241.94+302047.51,083 [104] Triangulum Galaxy L/Teff
LGGS J004034.74+404459.61,078 [104] Andromeda Galaxy L/Teff
LGGS J004059.50+404542.61,071 [104] Andromeda Galaxy L/Teff
LGGS J013430.75+303218.81,067 [104] Triangulum Galaxy L/Teff
LGGS J013412.27+305314.11,063 [104] –1,066 [129] Triangulum Galaxy L/Teff
LGGS J013328.17+304741.51,063 [104] Triangulum Galaxy L/Teff
LGGS J004524.97+420727.21,059 [104] Andromeda Galaxy L/Teff
LGGS J013233.77+302718.81,058 [104] –1,129 [129] Triangulum Galaxy L/Teff
LGGS J004125.72+411212.71,058 [104] Andromeda Galaxy L/Teff
LGGS J004114.18+403759.81,058 [104] Andromeda Galaxy L/Teff
LGGS J013307.60+304259.01,051 [104] Triangulum Galaxy L/Teff
LGGS J004103.67+410211.81,047 [104] Andromeda Galaxy L/Teff
LGGS J013305.48+303138.51,046 [104] Triangulum Galaxy L/Teff
LGGS J004442.41+412649.51,040 [104] Andromeda Galaxy L/Teff
LGGS J013403.87+303753.21,040 [104] Triangulum Galaxy L/Teff
LGGS J013351.47+303640.31,034 [104] Triangulum Galaxy L/Teff
LGGS J004306.62+413806.21,028 [104] Andromeda Galaxy L/Teff
LGGS J013303.54+303201.21,027 [104] –1,131 [129] Triangulum Galaxy L/Teff
LGGS J004234.41+405855.91,023 [104] Andromeda Galaxy L/Teff
LGGS J004051.31+404421.71,022 [104] Andromeda Galaxy L/Teff
LGGS J004031.00+404311.11,011 [104] Andromeda Galaxy L/Teff
LGGS J013406.20+303913.61,009 [104] Triangulum Galaxy L/Teff
LGGS J013344.10+304425.11,007 [104] Triangulum Galaxy L/Teff
LGGS J004307.36+405852.21,007 [104] Andromeda Galaxy L/Teff
LGGS J013407.13+303929.5994 [104] Triangulum Galaxy L/Teff
LGGS J013312.35+303033.9993 [104] Triangulum Galaxy L/Teff
LGGS J013330.05+303145.9988 [104] Triangulum Galaxy L/Teff
LGGS J013350.84+304403.1984 [104] Triangulum Galaxy L/Teff
LGGS J013329.47+301848.3981 [104] Triangulum Galaxy L/Teff
LGGS J004148.74+410843.0981 [104] Andromeda Galaxy L/Teff
LGGS J004415.76+411750.7977 [104] Andromeda Galaxy L/Teff
LGGS J004127.44+411240.7977 [104] Andromeda Galaxy L/Teff
LGGS J013312.75+303946.1975 [104] Triangulum Galaxy L/Teff
LGGS J004027.36+410444.9973 [104] Andromeda Galaxy L/Teff
LGGS J013434.35+302627.3973 [104] Triangulum Galaxy L/Teff
LGGS J013423.29+305655.0993 [104] –972 [129] Triangulum Galaxy L/Teff
LGGS J013319.13+303642.5970 [104] Triangulum Galaxy L/Teff
LGGS J004305.77+410742.5969 [104] Andromeda Galaxy L/Teff
LGGS J013403.73+304202.4965 [104] –1,032 [129] Triangulum Galaxy L/Teff
LGGS J004346.10+411138.8962 [104] Andromeda Galaxy L/Teff
LGGS J004419.20+412343.7959 [104] Andromeda Galaxy L/Teff
LGGS J013353.91+302641.8959 [104] –1,008 [129] Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0958 [104] Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0956 [129] Triangulum Galaxy L/Teff
LGGS J004138.35+412320.7954 [104] Andromeda Galaxy L/Teff
LGGS J004419.45+411749.5950 [104] Andromeda Galaxy L/Teff
LGGS J013413.95+303339.6948 [104] Triangulum Galaxy L/Teff
LGGS J013336.42+303530.9947 [104] Triangulum Galaxy L/Teff
LGGS J004047.82+410936.4943 [104] Andromeda Galaxy L/Teff
LGGS J013258.18+303606.3943 [104] Triangulum Galaxy L/Teff
LGGS J004447.74+413050.0938 [104] Andromeda Galaxy L/Teff
2MASS J01343131+3046088938 [104] Triangulum Galaxy L/Teff
LGGS J004346.18+411515.0936 [104] Andromeda Galaxy L/Teff
LGGS J004304.62+410348.4936 [104] Andromeda Galaxy L/Teff
LGGS J004458.28+413154.3933 [104] Andromeda Galaxy L/Teff
LGGS J004102.82+410422.3933 [104] Andromeda Galaxy L/Teff
LGGS J013344.33+303636.0932 [104] Triangulum Galaxy L/Teff
LGGS J004631.49+421133.1932 [104] Andromeda Galaxy L/Teff
LGGS J013321.44+304045.4932 [104] –1,015 [129] Triangulum Galaxy L/Teff
LGGS J013358.04+304900.1931 [104] Triangulum Galaxy L/Teff
LGGS J013314.31+302952.91,067 [104] –930 [129] Triangulum Galaxy L/Teff
LGGS J013315.97+303153.7929 [104] Triangulum Galaxy L/Teff
LGGS J004126.14+403346.5927 [104] Andromeda Galaxy L/Teff
LGGS J004347.31+411203.6925 [104] Andromeda Galaxy L/Teff
LGGS J004252.78+405627.5923 [104] Andromeda Galaxy L/Teff
LGGS J013411.54+303312.6918 [104] Triangulum Galaxy L/Teff
LGGS J013357.08+303817.8918 [104] Triangulum Galaxy L/Teff
LGGS J003943.89+402104.6917 [104] Andromeda Galaxy L/Teff
LGGS J004503.35+413026.3916 [104] Andromeda Galaxy L/Teff
LGGS J013338.97+303828.9915 [104] Triangulum Galaxy L/Teff
LGGS J013330.27+303510.6915 [104] Triangulum Galaxy L/Teff
LGGS J004033.06+404303.1912 [104] Andromeda Galaxy L/Teff
LGGS J004357.15+411136.6911 [104] Andromeda Galaxy L/Teff
LGGS J004406.60+411536.6911 [104] Andromeda Galaxy L/Teff
LGGS J013312.38+302453.2911 [104] –952 [129] Triangulum Galaxy L/Teff
LGGS J004451.76+420006.0911 [104] Andromeda Galaxy L/Teff
LGGS J013322.82+301910.9934 [104] –911 [129] Triangulum Galaxy L/Teff
LGGS J013355.56+304120.9908 [104] Triangulum Galaxy L/Teff
LGGS J004034.40+403627.4907 [104] Andromeda Galaxy L/Teff
LGGS J003910.56+402545.6906 [104] Andromeda Galaxy L/Teff
LGGS J004142.43+411814.1906 [104] Andromeda Galaxy L/Teff
LGGS J013316.57+303051.9902 [104] Triangulum Galaxy L/Teff
LGGS J013245.59+303518.7900 [104] Triangulum Galaxy L/Teff
LGGS J004034.67+404322.5898 [104] Andromeda Galaxy L/Teff
LGGS J004027.65+405126.7898 [104] Andromeda Galaxy L/Teff
LGGS J004322.75+411101.8895 [104] Andromeda Galaxy L/Teff
LGGS J004116.47+410813.7895 [104] Andromeda Galaxy L/Teff
LGGS J013306.33+303208.2894 [104] Triangulum Galaxy L/Teff
LGGS J004039.12+404252.3894 [104] Andromeda Galaxy L/Teff
LGGS J004433.96+415414.8893 [104] Andromeda Galaxy L/Teff
LGGS J013454.31+304109.8891 [129] Triangulum Galaxy L/Teff
LGGS J004030.64+404246.2890 [104] Andromeda Galaxy L/Teff
LGGS J004252.67+413615.2889 [104] Andromeda Galaxy L/Teff
LGGS J013349.94+302928.8888 [104] Triangulum Galaxy L/Teff
2MASS J01335010+3039106886 [104] Triangulum Galaxy L/Teff
LGGS J013357.37+304558.7886 [104] Triangulum Galaxy L/Teff
LGGS J013338.77+303532.9885 [104] Triangulum Galaxy L/Teff
LGGS J013359.20+303212.1884 [104] Triangulum Galaxy L/Teff
LGGS J013340.42+303131.3880 [104] Triangulum Galaxy L/Teff
LGGS J004511.40+413717.8880 [104] Andromeda Galaxy L/Teff
LGGS J013352.16+303902.2880 [104] Triangulum Galaxy L/Teff
LGGS J004219.25+405116.4880 [104] Andromeda Galaxy L/Teff
LGGS J004331.90+411145.0880 [104] Andromeda Galaxy L/Teff
2MASS J01333718+3038206879 [104] Triangulum Galaxy L/Teff
LGGS J013415.42+302816.4876 [104] Triangulum Galaxy L/Teff
LGGS J013345.01+302105.1876 [104] Triangulum Galaxy L/Teff
LGGS J004107.23+411636.8870 [104] Andromeda Galaxy L/Teff
LGGS J013417.83+303356.0867 [104] Triangulum Galaxy L/Teff
LGGS J004120.25+403838.1867 [104] Andromeda Galaxy L/Teff
LGGS J004402.38+412114.9866 [104] Andromeda Galaxy L/Teff
2MASS J01334194+3038565866 [104] Triangulum Galaxy L/Teff
LGGS J013309.10+303017.8865 [104] –933 [129] Triangulum Galaxy L/Teff
LGGS J004429.36+412307.8862 [104] Andromeda Galaxy L/Teff
LGGS J013310.20+303314.4861 [104] Triangulum Galaxy L/Teff
LGGS J004404.60+412729.8860 [104] Andromeda Galaxy L/Teff
LGGS J003907.69+402859.5860 [104] Andromeda Galaxy L/Teff
LGGS J004219.64+412736.1859 [104] Andromeda Galaxy L/Teff
LGGS J003949.31+402049.1859 [104] Andromeda Galaxy L/Teff
LGGS J013310.16+302726.3855 [104] Triangulum Galaxy L/Teff
LGGS J004036.97+403412.4855 [104] Andromeda Galaxy L/Teff
LGGS J013343.68+304450.7855 [104] Triangulum Galaxy L/Teff
LGGS J013409.10+303351.8854 [104] Triangulum Galaxy L/Teff
LGGS J013407.11+303918.7854 [104] Triangulum Galaxy L/Teff
LGGS J004107.11+411635.6854 [104] Andromeda Galaxy L/Teff
LGGS J013400.01+304622.2852 [104] Triangulum Galaxy L/Teff
LGGS J013327.14+303917.4851 [104] Andromeda Galaxy L/Teff
LGGS J013339.79+304032.2850 [104] Triangulum Galaxy L/Teff
LGGS J004501.30+413922.5850 [104] Andromeda Galaxy L/Teff
LGGS J004450.87+412924.3850 [104] Andromeda Galaxy L/Teff
LGGS J004040.69+405908.1850 [104] Andromeda Galaxy L/Teff
LGGS J003942.92+402051.1850 [104] Andromeda Galaxy L/Teff
2MASS J01335092+3040481850 [104] Triangulum Galaxy L/Teff
LGGS J013315.19+305319.8847 [104] Triangulum Galaxy L/Teff
LGGS J013416.89+305158.3845 [104] –920 [129] Triangulum Galaxy L/Teff
LGGS J004415.17+415640.6845 [104] Andromeda Galaxy L/Teff
LGGS J004424.94+412322.3844 [104] Andromeda Galaxy L/Teff
LGGS J013331.93+301952.9838 [104] Triangulum Galaxy L/Teff
LGGS J004406.16+414846.4836 [104] Andromeda Galaxy L/Teff
LGGS J013445.65+303235.4835 [104] Triangulum Galaxy L/Teff
LGGS J004109.39+404901.9834 [104] Andromeda Galaxy L/Teff
LGGS J004423.83+414928.6833 [104] Andromeda Galaxy L/Teff
LGGS J013242.31+302113.9833 [129] Triangulum Galaxy L/Teff
LGGS J004030.48+404051.1833 [104] Andromeda Galaxy L/Teff
LGGS J004118.29+404940.3832 [104] Andromeda Galaxy L/Teff
LGGS J013414.17+304701.9831 [104] Triangulum Galaxy L/Teff
LGGS J013328.89+303058.0831 [104] Triangulum Galaxy L/Teff
LGGS J004107.70+403702.3831 [104] Andromeda Galaxy L/Teff
LGGS J003925.67+404111.8831 [104] Andromeda Galaxy L/Teff
LGGS J004306.95+410038.2826 [104] Andromeda Galaxy L/Teff
LGGS J013408.81+304637.8826 [104] Triangulum Galaxy L/Teff
LGGS J013345.22+303138.2826 [104] Triangulum Galaxy L/Teff
LGGS J003950.65+402531.8825 [104] Andromeda Galaxy L/Teff
LGGS J013427.65+305642.4825 [129] Triangulum Galaxy L/Teff
LGGS J013500.04+303703.8823 [104] Triangulum Galaxy L/Teff
LGGS J004108.42+410655.3822 [104] Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7821 [104] –820 [129] Triangulum Galaxy L/Teff
LGGS J004458.57+412925.1821 [104] Andromeda Galaxy L/Teff
LGGS J013309.97+302727.5973 [104] Triangulum Galaxy L/Teff
LGGS J004124.81+411206.1819 [104] Andromeda Galaxy L/Teff
LGGS J013401.65+303128.7819 [104] Triangulum Galaxy L/Teff
LGGS J013455.65+304349.0816 [104] Triangulum Galaxy L/Teff
LGGS J013310.60+302301.8816 [104] Triangulum Galaxy L/Teff
LGGS J004544.71+414331.9815 [104] Andromeda Galaxy L/Teff
LGGS J004119.35+410836.4813 [104] Andromeda Galaxy L/Teff
LGGS J013436.65+304517.1814 [104] –812 [129] Triangulum Galaxy L/Teff
LGGS J013301.79+303954.3812 [104] Triangulum Galaxy L/Teff
LGGS J013328.85+310041.7810 [104] –909 [129] Triangulum Galaxy L/Teff
LGGS J013401.08+303432.2809 [104] Triangulum Galaxy L/Teff
LGGS J004036.45+403613.1808 [104] Andromeda Galaxy L/Teff
LGGS J004521.53+413758.6807 [104] Andromeda Galaxy L/Teff
LGGS J004432.38+415149.9807 [104] Andromeda Galaxy L/Teff
LGGS J013306.95+303506.1807 [129] Triangulum Galaxy L/TeffContradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG.
LGGS J013242.26+302114.1807 [104] Triangulum Galaxy L/Teff
LGGS J013321.94+304112.0806 [104] –829 [129] Triangulum Galaxy L/Teff
LGGS J013304.56+303043.2804 [104] Triangulum Galaxy L/Teff
LGGS J004331.73+414223.0803 [104] Andromeda Galaxy L/Teff
LGGS J004044.17+410729.0803 [104] Andromeda Galaxy L/Teff
LGGS J013352.83+305605.2803 [104] Triangulum Galaxy L/Teff
LGGS J013343.30+303318.9873 [104] –803 [129] Triangulum Galaxy L/Teff
LGGS J013342.61+303534.7800 [104] Triangulum Galaxy L/Teff
LGGS J013326.90+310054.2800 [104] –909 [129] Triangulum Galaxy L/Teff
LGGS J013300.94+303404.3798 [104] Triangulum Galaxy L/Teff
LGGS J013416.06+303730.0798 [104] Triangulum Galaxy L/Teff
LGGS J004503.83+413737.0797 [104] Andromeda Galaxy L/Teff
LGGS J004503.83+413737.0797 [104] Andromeda Galaxy L/Teff
LGGS J004438.83+415253.0794 [104] Andromeda Galaxy L/Teff
LGGS J004235.88+405442.2794 [104] Andromeda Galaxy L/Teff
LGGS J004335.28+410959.7794 [104] Andromeda Galaxy L/Teff
LGGS J013402.32+303828.4793 [104] Triangulum Galaxy L/Teff
LGGS J004125.55+405034.8792 [104] Andromeda Galaxy L/Teff
LGGS J013507.43+304132.6791 [104] Triangulum Galaxy L/Teff
LGGS J013353.25+303918.7791 [104] Triangulum Galaxy L/Teff
LGGS J004308.71+410604.5790 [104] Andromeda Galaxy L/Teff
LGGS J013417.17+304826.6789 [104] Triangulum Galaxy L/Teff
LGGS J013310.71+302714.9789 [104] –884 [129] Triangulum Galaxy L/Teff
LGGS J013432.36+304159.0788 [104] Triangulum Galaxy L/Teff
LGGS J004356.23+414641.8788 [104] Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7788 [104] Triangulum Galaxy L/Teff
LGGS J013346.61+304125.4786 [104] Triangulum Galaxy L/Teff
LGGS J004447.08+412801.7785 [104] Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5785 [131] Andromeda Galaxy L/Teff
LGGS J013231.91+302329.1783 [104] Triangulum Galaxy L/Teff
LGGS J004110.32+410433.4782 [104] Andromeda Galaxy L/Teff
LGGS J004159.06+405718.7780 [104] Andromeda Galaxy L/Teff
LGGS J004241.10+413142.3775 [104] Andromeda Galaxy L/Teff
LGGS J013401.88+303858.3776 [129] Triangulum Galaxy L/Teff
LGGS J013445.12+305858.9773 [104] Triangulum Galaxy L/Teff
LGGS J004030.92+404329.3773 [104] Andromeda Galaxy L/Teff
LGGS J013359.57+303413.5771 [104] Triangulum Galaxy L/Teff
LGGS J004353.97+411255.6771 [104] Andromeda Galaxy L/Teff
LGGS J004029.03+403412.6770 [104] Andromeda Galaxy L/Teff
LGGS J004526.24+420047.5767 [104] Andromeda Galaxy L/Teff
LGGS J013348.44+302029.8767 [104] Triangulum Galaxy L/Teff
LGGS J004552.15+421003.5767 [104] Andromeda Galaxy L/Teff
LGGS J013320.75+303204.8764 [104] Triangulum Galaxy L/Teff
LGGS J013416.28+303353.5763 [104] –801 [129] Triangulum Galaxy L/Teff
LGGS J013357.91+303338.9763 [104] Triangulum Galaxy L/Teff
LGGS J013253.14+303515.3762 [104] Triangulum Galaxy L/Teff
LGGS J004051.18+403053.4762 [104] Andromeda Galaxy L/Teff
LGGS J013402.57+303746.3762 [104] Triangulum Galaxy L/Teff
LGGS J013352.15+304006.4762 [104] Triangulum Galaxy L/Teff
LGGS J004427.07+415203.0762 [104] Andromeda Galaxy L/Teff
LGGS J004233.23+405917.0762 [104] Andromeda Galaxy L/Teff
LGGS J004156.96+405720.8761 [104] Andromeda Galaxy L/Teff
LGGS J004117.14+410843.7761 [104] Andromeda Galaxy L/Teff
LGGS J004124.80+411634.7760, 1,205, 1,240 [131] Andromeda Galaxy L/Teff
LGGS J004109.61+404920.4761 [104] Andromeda Galaxy L/Teff
LGGS J003930.09+402313.0759 [104] Andromeda Galaxy L/Teff
LGGS J013324.71+303423.7758 [104] Triangulum Galaxy L/Teff
LGGS J013317.40+303210.8758 [104] Triangulum Galaxy L/Teff
LGGS J013411.83+304631.0756 [104] Triangulum Galaxy L/Teff
LGGS J004417.75+420039.1755 [104] Andromeda Galaxy L/Teff
LGGS J004454.50+413007.8755 [104] Andromeda Galaxy L/Teff
LGGS J013348.77+304526.8754 [104] Triangulum Galaxy L/Teff
LGGS J004019.69+404912.2754 [104] Andromeda Galaxy L/Teff
LGGS J004340.32+411157.1753 [104] Andromeda Galaxy L/Teff
LGGS J013304.02+303215.2753 [104] Triangulum Galaxy L/Teff
LGGS J013409.16+303846.9752 [104] Triangulum Galaxy L/Teff
LGGS J013459.81+304156.9751 [104] –765 [129] Triangulum Galaxy L/Teff
LGGS J013334.82+302029.1751 [104] –930 [129] Triangulum Galaxy L/Teff
LGGS J013400.71+303422.3750 [104] Triangulum Galaxy L/Teff
LGGS J004224.65+412623.7749 [104] Andromeda Galaxy L/Teff
LGGS J013414.88+303401.2749 [104] Triangulum Galaxy L/Teff
LGGS J004343.33+414529.5749 [104] Andromeda Galaxy L/Teff
LGGS J004034.76+403648.9749 [104] Andromeda Galaxy L/Teff
LGGS J013353.53+303418.7749 [104] Triangulum Galaxy L/Teff
LGGS J004501.84+420259.2747 [104] Andromeda Galaxy L/Teff
LGGS J013409.70+303916.2744 [104] Triangulum Galaxy L/Teff
LGGS J013345.71+303609.8744 [104] Triangulum Galaxy L/Teff
LGGS J004342.75+411442.8743 [104] Andromeda Galaxy L/Teff
LGGS J013333.32+303147.2741 [104] Triangulum Galaxy L/Teff
LGGS J013338.97+303506.1741 [104] Triangulum Galaxy L/Teff
LGGS J013303.61+302841.5741 [104] Triangulum Galaxy L/Teff
LGGS J004201.12+412516.0737 [104] Andromeda Galaxy L/Teff
LGGS J004341.35+411213.8734 [104] Andromeda Galaxy L/Teff
LGGS J013438.76+304608.1734 [104] Triangulum Galaxy L/Teff
LGGS J013402.33+301749.2734 [104] –786 [129] Triangulum Galaxy L/Teff
2MASS J01334180+3040207732 [104] Triangulum Galaxy L/Teff
LGGS J013354.32+301724.6732 [104] –854 [129] Triangulum Galaxy L/Teff
LGGS J013334.23+303400.3732 [104] Triangulum Galaxy L/Teff
LGGS J013357.60+304113.3730 [104] Triangulum Galaxy L/Teff
LGGS J004614.57+421117.4730 [104] Andromeda Galaxy L/Teff
LGGS J004120.96+404125.3730 [104] Andromeda Galaxy L/Teff
LGGS J004228.46+405519.0728 [104] Andromeda Galaxy L/Teff
LGGS J004024.52+404444.8728 [104] Andromeda Galaxy L/Teff
LGGS J013349.75+304459.8727 [104] Triangulum Galaxy L/Teff
LGGS J013306.88+303004.6727 [104] Triangulum Galaxy L/Teff
LGGS J004358.00+412114.1727 [104] Andromeda Galaxy L/Teff
LGGS J004147.27+411537.8727 [104] Andromeda Galaxy L/Teff
LGGS J013407.23+304158.8725 [104] –833 [129] Triangulum Galaxy L/Teff
LGGS J004519.82+415531.9725 [104] Andromeda Galaxy L/Teff
LGGS J004410.84+411538.8725 [104] Andromeda Galaxy L/Teff
LGGS J013407.38+305935.0724 [104] Triangulum Galaxy L/Teff
LGGS J004438.75+415553.6724 [104] Andromeda Galaxy L/Teff
LGGS J004324.16+411228.3723 [104] Andromeda Galaxy L/Teff
LGGS J004059.58+403815.6723 [104] Andromeda Galaxy L/Teff
LGGS J013327.40+304126.4721 [104] Triangulum Galaxy L/Teff
LGGS J013243.72+301912.5721 [104] –783 [129] Triangulum Galaxy L/Teff
Gaia DR3 303379932695513216720 [104] Triangulum Galaxy L/Teff
LGGS J004558.92+414642.1720 [104] Andromeda Galaxy L/Teff
LGGS J004103.46+403633.2717 [104] Andromeda Galaxy L/Teff
LGGS J013324.89+301754.3717 [104] Triangulum Galaxy L/Teff
LGGS J004015.18+405947.7716 [104] Andromeda Galaxy L/Teff
LGGS J013414.53+303557.7715 [104] Triangulum Galaxy L/Teff
LGGS J013351.89+303853.5715 [104] Triangulum Galaxy L/Teff
LGGS J004458.82+413050.4715 [104] Andromeda Galaxy L/Teff
LGGS J013352.51+303942.2715 [104] Triangulum Galaxy L/Teff
LGGS J004124.91+411133.1715 [104] Andromeda Galaxy L/Teff
LGGS J004604.18+415135.4713 [104] Andromeda Galaxy L/Teff
LGGS J013305.17+303119.8711 [104] Triangulum Galaxy L/Teff
LGGS J004517.25+413948.2711 [104] Andromeda Galaxy L/Teff
LGGS J013349.86+303246.1710 [132] –795 [129] Triangulum Galaxy L/TeffA yellow supergiant.
2MASS J01335929+3034435709 [104] Triangulum Galaxy L/Teff
LGGS J004230.32+405624.1708 [104] Andromeda Galaxy L/Teff
LGGS J004101.02+403506.1708 [104] Andromeda Galaxy L/Teff
LGGS J004119.21+411237.2707 [104] Andromeda Galaxy L/Teff
LGGS J004606.25+415018.9707 [104] Andromeda Galaxy L/Teff
LGGS J013442.05+304540.2707 [104] –707 [129] Triangulum Galaxy L/Teff
LGGS J013431.84+302721.5707 [104] –717 [129] Triangulum Galaxy L/Teff
LGGS J013304.68+304456.0707 [104] –739 [129] Triangulum Galaxy L/Teff
LGGS J004432.27+415158.4705 [104] Andromeda Galaxy L/Teff
2MASS J01335131+3039149704 [104] Triangulum Galaxy L/Teff
LGGS J013339.46+302113.0703 [104] –748 [129] Triangulum Galaxy L/Teff
LGGS J003935.36+401946.4703 [104] Andromeda Galaxy L/Teff
LGGS J013343.03+303433.5702 [104] Triangulum Galaxy L/Teff
LGGS J004505.87+413452.3702 [104] Andromeda Galaxy L/Teff
LGGS J013414.18+305248.0701 [104] –731 [129] Triangulum Galaxy L/Teff
LGGS J013402.53+304107.7701 [104] –749 [129] Triangulum Galaxy L/Teff
LGGS J013340.80+304248.5701 [104] –814 [129] Triangulum Galaxy L/Teff
LGGS J013312.59+303252.5701 [104] Triangulum Galaxy L/Teff
The following well-known stars are listed for the purpose of comparison.
Var 83 150 [133] Triangulum Galaxy L/TeffA luminous blue variable and one of the most luminous stars in M33.

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
GalaxyMethod [a] Notes
Sextans A 10995±130 [134] Sextans AL/Teff
NGC 6822-RSG 19930 [135] NGC 6822L/Teff
WLM 02883+284
−167
[136]
WLML/Teff
Sextans A 5870±145 [134] Sextans AL/Teff
NGC 6822-RSG 26868 [135] NGC 6822L/Teff
NGC 6822-RSG 12839 [135] NGC 6822L/Teff
Leo A 7785 [137] Leo AL/Teff
NGC 6822-RSG 9765 [135] NGC 6822L/Teff
NGC 6822-RSG 6714 [135] NGC 6822L/Teff
Sextans A 7710±100 [134] Sextans AL/Teff
The following well-known stars are listed for the purpose of comparison.
NGC 6822-WR 12 3.79 [138] NGC 6822L/TeffA Wolf-Rayet star, one of the hottest known stars.

Outside the Local Group (inside the Virgo supercluster)

List of the largest known stars in galaxies outside the Local Group inside the Virgo supercluster
Star name Solar radii
(Sun = 1)
GalaxyGroupMethod [a] Notes
NGC 1313-3101,668+168
−190
[139]
NGC 1313 [TSK2008] 236 [140] L/TeffLuminosity has not yet been constrained well enough yet to confirm its extreme properties, and further observations are needed to show that it is a single, uncontaminated star. Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1251,504+176
−157
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-1541,503+79
−75
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 7793-341,392+157
−160
[139]
NGC 7793 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-401,286 +116
106
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 2403 V141,260 [141] NGC 2403 M81 Group L/TeffA F-type luminous blue variable.
NGC 300-1541,200 +123
111
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1141,181 +123
111
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1991,181 +120
109
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1531,173 +120
109
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1501,167 +119
107
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 253-20061,167 +75
70
[139]
Sculptor Galaxy Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
SPIRITS 14atl 1,134–1,477 [142] Messier 83 Centaurus A/M83 Group L/Teff
NGC 300-591,133 +146
129
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 7793-861,127 +94
109
[139]
NGC 7793 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-2631,108 +113
102
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-4471,101 +58
56
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
SPIRITS 15ahp 1,098 [142] NGC 2403 M81 Group L/Teff
NGC 300-2401,088 +112
101
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 7793-861,078 +69
64
[139]
NGC 7793 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1731,063 +84
77
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-3401,036 +105
95
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-3461,023 +139
128
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-5331,004 +66
62
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-351992 +115
102
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-524987 +77
72
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-135964 +99
89
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-93955 +49
47
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 7793-539948 [139] NGC 7793 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-87948 +109
98
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-146921 +49
46
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-273921 +94
85
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-186915 +72
65
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-200905 +59
55
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-152895 +58
54
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-413861 +66
61
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-174856 +65
61
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
M81 10584-25-2851 [141] Messier 81 M81 Group L/Teff
M81 10584-13-3843 [141] Messier 81 M81 Group L/Teff
NGC 55-75836 +81
111
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-545824 +104
93
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-2912821 +54
51
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-216801 +102
89
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-1471798 +52
48
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-499796 +89
108
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-379744 +56
52
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-838744 +57
53
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-149738 +47
55
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-194730 +46
44
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
[GKE2015] 7 729 [143] NGC 300 NGC 55 Group L/Teff
NGC 55-270728 +38
36
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1047724 +65
59
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-3231719 +56
51
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 247-2966719 +56
52
[139]
NGC 247 Sculptor Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 55-245717 +55
50
[139]
NGC 55 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1068716 +64
58
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
NGC 300-1081712 +54
51
[139]
NGC 300 NGC 55 Group L/TeffEffective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. [139]
The following well-known stars are listed for the purpose of comparison.
NGC 2363-V1 194356 [144] NGC 2366 M81 Group L/Teff
[HMR2016] N4038 13068124-885 [145] NGC 4038 NGC 4038 Group L/Teff
[HMR2016] N4038 4684288-815 [146] NGC 4038 NGC 4038 Group L/Teff

Outside the Virgo supercluster

Note that this list does not include the candidate JWST dark stars, with estimated radii of up to 61 astronomical units (13,000 R) [147] or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au). [148]

Star name Solar radii
(Sun = 1)
GalaxyGroupMethod [a] Notes
Quyllur 965 [149] ACT-CL J0102-4915 L/TeffLikely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope.
The following well-known stars are listed for the purpose of comparison.
Godzilla 430–2,365 [150] Sunburst galaxy PSZ1 G311.65-18.48 L/TeffThe most luminous known star. [151]
Mothra 271 [152] LS1 MACS J0416.1-2403 L/TeffA binary star at cosmological distances.

Transient events

During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.

List of largest stars during transient events
Star or transient event name Solar radii
(Sun = 1)
YearGalaxyGroupMethodNotes
AT 2017jfs >33,000 [153] 2017 NGC 4470 L/Teff
SNhunt151 16,700 [154] 2014 UGC 3165 LDC 331 L/Teff
SN 2015bh 16,400±2,600 [155] 2015 NGC 2770 LDC 616 L/Teff
AT 2018hso 10,350 [156] 2018 NGC 3729 M109 Group L/Teff
AT 2023clx 6,800 [157] 2023 NGC 3799 nest 101314L/Teff
M51 OT2019-1 5,500 [158] 2019 Whirlpool Galaxy M51 Group L/Teff
η Carinae 4,319 – 6,032 [87] 1845 Milky Way Local Group L/TeffDuring the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0. [159]
AT 2010dn 4,130 [160] 2010 NGC 3180 LDC 743 L/Teff
SN 2011fh 3,980 [161] 2011 NGC 4806 Abell 3528 L/Teff
AT 2014ej 3,600 [162] 2014 NGC 7552 Grus Quartet L/Teff
V838 Monocerotis 3,190 [77] 2002 Milky Way Local Group L/Teff
SN2008S 3,020 [160] 2008 NGC 6946 NGC 6946 Group L/Teff
SNhunt120 2,900 [163] [162] 2012 NGC 5775 Virgo Cluster L/Teff
AT 2017be 2,000 [164] 2017 NGC 2537 L/Teff
PHL 293B star1,348 – 1,463 [165] 2002 PHL 293B L/Teff
SNhunt248 ~850 [166] 2014 NGC 5806 NGC 5846 Group L/Teff
R71 500 [167] 2012 Large Magellanic Cloud Local GroupL/Teff
SN 2000ch 500 [168] 2000 NGC 3432 LDC 743 L/Teff
Godzilla 430 – 2,365 [150] 2015 Sunburst galaxy ?
AT 2016blu ~330 [169] 2012 2022 NGC 4559 Coma I Group L/Teff19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 2009. [169]

SN Progenitors

List of largest supernova progenitors
Star or supernova name Solar radii
(Sun = 1)
YearGalaxyGroupMethodNotes
SN 2020faa 1,000 [170] 20202MASS J14470904+7244157L/Teff
SN 2023ixf 912+227
−222
[171] 1,060±30 [172]
2023 Pinwheel galaxy M101 Group L/Teff
SN 2020jfo 700±10 [173] 2020 Messier 61 Virgo Cluster L/Teff
SN 2023axu 417±28 [174] 2023 NGC 2283 L/Teff
SN 2021agco 78.37+25.59
−19.94
[175]
2021 UGC 3855 LDC 506L/TeffNearest ultrastripped supernova known.

Largest stars by apparent size

The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is the milliarcsecond (mas), equivalent to 10×10−3  arcseconds . Stars with angular diameters larger than 13 milliarcseconds are included.

List of largest stars by apparent size (angular diameter)
NameAngular diameter
(mas)
Angular diameter type [g] Distance
(light-years)
Spectral type [176] Notes
Sun 2,000,0000.000016G2VThe largest star by angular diameter.
R Doradus 51.18±1.24 [81] LD

179±10 [81]

M8III:eThe largest star by angular diameter apart from the Sun.
Betelgeuse
(α Orionis)
42.28±0.43 [68] LD

408–540+98
49
[68]

M1-M2Ia-Iab
Antares
(α Scorpii A)
37.31±0.09 [177] LD553.5±93.9 [178] M1.5Iab
Mira
(ο Ceti)
28.9±0.3 34.9±0.4 [179] Ross299±33 [178] M5-M9IIIeThe angular diameter vary during Mira's pulsations.
Gacrux
(γ Crucis)
24.7 [92] ?88.6±0.4 [178] M3.5III
Rasalgethi
(α Herculis)
23.95±5.03 [82] Est359±52 [178] M5Ib-II
R Hydrae 23.7±1 [16] ?482±33 [16] M6-9e
Arcturus
(α Boötis)
21.06±0.17 [180] LD36.8 [180] K1.5IIIFe-0.5
π1 Gruis 21 [181] ?535 [181] S5,7
Aldebaran
(α Tauri)
20.58 [182] –21.1 [183] LD65.3±1 [184] K5+III
GY Aquilae 20.46 [16] ?1108±98 [16] M8
R Lyrae 18.016±0.224 [183] LD310+10
7
[185]
M4.5III
Scheat
(β Pegasi)
16.75±0.24 [186] Ross196±2 [178] M2.5II-III
Gorgonea Tertia
(ρ Persei)
16.555±0.166 [183] LD308±7 [178] M4+IIIa
SW Virginis 16.11±0.13–16.8±0.34 [187] UD527±46.9 [188] M7III:
R Aquarii 15.61±0.8 16.59±1.03 [187] LD711+39
36
[189]
M6.5–M8.5e
g Herculis 15.2±0.5 19.09±0.19 [187] LD385±10 [185] M6-III
RS Cancri 15.1±0.5 17.2±0.4 [183] LD490±40 [190] M6S
Tejat
(μ Geminorum)
15.118±0.151 [183] LD230±10 [178] M3IIIab
R Leonis Minoris 14.4±0.87 [187] LD942+33
47
[185]
M6.5-9e
S Cephei 14.29±2.28 [187] LD1591+49
46
[185]
C7,3e
T Cassiopeiae 14.22±0.73 [187] LD893+49
46
[185]
M7-9e
μ Cephei (Herschel's Garnet Star)14.11 ± 0.6 [191] 3060+460
130
[192]
M2Ia
Mirach
(β Andromedae)
13.749±0.137 [183] LD199±9 [193] M0+IIIa
Menkar
(α Ceti)
13.238±0.056 [183] LD249±8 [178] M1.5IIIaOther measurements include 12.2±0.04 mas. [194]
V Cygni 13.1±0.208 14.84±2.37 [187] LD1747+163
137
[185]
C7,4eJ

See also

Notes

  1. 1 2 3 4 5 6 Methods for calculating the radius:
  2. 1 2 3 4 5 6 At the J2000 epoch
  3. Using an angular diameter of 7.8±0.64  milliarcseconds [20] and a distance of 1610+130
    −110
      parsecs.
    [21]
  4. Using an angular diameter of 14.11±0.6  milliarcseconds and a distance of 940+140
    −40
      parsecs.
  5. Luminosities are calculated using the apparent bolometric magnitude and distances in the following equation:
    100.4 (4.74(mbol+55 log(dist)))
  6. Calculated using a distance of 432 parsecs and an angular diameter of 2.31 milliarcseconds.
  7. Legend:
    UD=Uniform disk diameter
    LD=Limb-darkened diameter
    Ross=Rosseland diameter
    Est = Estimated using distance and physical radius

Related Research Articles

The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are driven mostly by the less intense line absorption. The Eddington limit is invoked to explain the observed luminosities of accreting black holes such as quasars.

Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3:

<span class="mw-page-title-main">Zeta Cephei</span> Star in the constellation Cepheus

Zeta Cephei is a red supergiant star, located about 1000 light-years away in the constellation of Cepheus. Zeta Cephei marks the left shoulder of Cepheus, the King of Ethiopia. It is one of the fundamental stars of the MK spectral sequence, defined as type K1.5 Ib.

HD 115337 is a binary star located in the northern circumpolar constellation Camelopardalis. The pair have a combined apparent magnitude of 6.25, placing it near the limit for naked eye visibility. Parallax measurements place the system at a distance of 698 light years. It has a heliocentric radial velocity of −9.4 km/s, indicating that it is drifting towards the Solar System.

<span class="mw-page-title-main">Westerlund 1-75</span> Red supergiant in the Westerlund 1 super star cluster

Westerlund 1 W75 or Wd 1-75 is a red supergiant (RSG) located in the Westerlund 1 super star cluster. Its radius is calculated to be around 668 solar radii (4.65 × 108 km, 3.10 au). This corresponds to a volume 298 million times bigger than the Sun. If placed at the center of the Solar System, Westerlund 1-75 would engulf the inner limits of the asteroid belt.

HD 193556 is a solitary star in the equatorial constellation Delphinus. It has an apparent magnitude of 6.17, making it visible to the naked eye under ideal conditions. Parallax measurements place the object at a distance of 467 light years and it is currently receding with a heliocentric radial velocity of 11.7 km/s.

HD 58425, also known as HR 2830, is an astrometric binary located in the northern circumpolar constellation Camelopardalis. It is faintly visible to the naked eye as an orang point of light at an apparent magnitude of 5.64. Based on parallax measurements from Gaia DR3, the system is estimated to be 470 light years away from Earth. It appears to be rapidly receding from the Sun, having a heliocentric radial velocity of 58.6 km/s. HD 58425 is listed as 54 Ursae Majoris in Johann Hevelius' catalogue, but this was dropped after the official IAU's official constellation borders were drawn.

HD 34255, also known HR 1720, is a star located in the northern circumpolar constellation Camelopardalis, the giraffe. It has an apparent magnitude of 5.60, allowing it to be faintly visible to the naked eye. The object is located relatively far at a distance of about 1.65 kly but is approaching the Solar System with a heliocentric radial velocity of −7.7 km/s.

<span class="mw-page-title-main">B324</span> Star in the Triangulum Galaxy

B324 is a yellow hypergiant in the Triangulum Galaxy, located near the giant H II region IC 142 around 2.7 million light years away. It is the brightest star in the Triangulum Galaxy in terms of apparent magnitude.

References

  1. Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv: 1510.07674 [astro-ph.SR].
  2. Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal. 659 (2): 1536–1540. arXiv: astro-ph/0612161 . Bibcode:2007ApJ...659.1536R. doi:10.1086/512672. S2CID   8913778.
  3. Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society. 474 (2): 2757–2773. arXiv: 1705.09301 . doi: 10.1093/mnras/stx2919 .
  4. Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society. 521: 463–473. arXiv: 2208.00008 . doi: 10.1093/mnras/stad572 .
  5. Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics. 652: L7. arXiv: 2105.13373 . Bibcode:2021A&A...652L...7H. doi:10.1051/0004-6361/202141376. S2CID   235247984.
  6. Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv: astro-ph/0603596 . Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN   0004-637X. S2CID   5150686.
  7. Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv: 2006.06605 . Bibcode:2020ApJ...898...24R. doi: 10.3847/1538-4357/ab9c17 . ISSN   0004-637X. S2CID   250739134.
  8. 1 2 3 4 5 6 "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 25 September 2021.
  9. 1 2 3 4 5 Healy, Sarah; Horiuchi, Shunsaku; Ashall, Chris (5 December 2024). "The Red Supergiant Problem: As Seen from the Local Group's Red Supergiant Populations". arXiv: 2412.04386 [astro-ph.SR].
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal . 160 (3): 145. arXiv: 2008.01108 . Bibcode:2020AJ....160..145H. doi: 10.3847/1538-3881/abab15 . S2CID   220961677.
  11. 1 2 Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv: 1203.5194 . Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN   0004-6361. S2CID   54044968.
  12. 1 2 Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: 25. arXiv: 1310.2400 . Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. ISSN   0004-6361. S2CID   263787323.
  13. Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv: 1811.05998 . Bibcode:2019AJ....157...57G. doi: 10.3847/1538-3881/aaf5cb . S2CID   119044678.
  14. Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS. 6 (1): 12. Bibcode:2022RNAAS...6...12N. doi: 10.3847/2515-5172/ac4991 . ISSN   2515-5172.
  15. 1 2 Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv: 1305.6179 . Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN   0004-6361. S2CID   73575062.
  16. 1 2 3 4 5 6 7 8 Montargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". Astronomy and Astrophysics. 671: A96. arXiv: 2301.02081 . Bibcode:2023A&A...671A..96M. doi:10.1051/0004-6361/202245398. S2CID   255440600.
  17. 1 2 3 4 5 6 7 Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706.
  18. 1 2 Tabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021). "The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?". Astronomy & Astrophysics. 646: A98. arXiv: 2011.09184 . Bibcode:2021A&A...646A..98T. doi:10.1051/0004-6361/202039236. ISSN   0004-6361. S2CID   241206934.
  19. 1 2 3 4 5 Wing, Robert F. (September 2009). The Biggest Stars of All. The Biggest, Baddest, Coolest Stars ASP Conference Series. Vol. 412. p. 113. Bibcode:2009ASPC..412..113W. S2CID   117001990.
  20. 1 2 Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy & Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN   0004-6361. Data about NML Cygni (IRC +40448) is found here at VizieR.
  21. Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry" (PDF). Astronomy & Astrophysics. 544: A42. arXiv: 1207.1850 . Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587. S2CID   55509287.
  22. Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv: 1209.6427 . Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65. ISSN   0004-637X. S2CID   53393926.
  23. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Healy, Sarah; Horiuchi, Shunsaku; Molla, Marta Colomer; Milisavljevic, Dan; Tseng, Jeff; Bergin, Faith; Weil, Kathryn; Tanaka, Masaomi (23 March 2024). "Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova". Monthly Notices of the Royal Astronomical Society. 529 (4): 3630–3650. arXiv: 2307.08785 . Bibcode:2024MNRAS.529.3630H. doi: 10.1093/mnras/stae738 . ISSN   0035-8711.
  24. Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal. 774 (2): 107. arXiv: 1308.3580 . Bibcode:2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107. S2CID   118867155.
  25. 1 2 3 4 5 Ryan Norris. "Student Science at NMT: Learning Optical Interferometry Through Projects on Evolved Stars" (PDF). CHARA.
  26. Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy & Astrophysics. 469 (2): 671–680. arXiv: 0705.0266 . Bibcode:2007A&A...469..671J. doi: 10.1051/0004-6361:20066353 . ISSN   0004-6361. S2CID   17789027.
  27. 1 2 3 4 5 6 Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv: astro-ph/0504337 . Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN   0004-637X. S2CID   15109583.
  28. "Mu Cephei | aavso". www.aavso.org. Retrieved 6 October 2024.
  29. 1 2 3 4 Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi: 10.11606/D.14.2019.tde-12092018-161841 .
  30. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC −10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843–856. arXiv: 1310.2245 . Bibcode:2014MNRAS.437..843G. doi: 10.1093/mnras/stt1943 . ISSN   0035-8711.
  31. 1 2 3 4 5 6 7 8 9 10 11 Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics . 674. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . hdl: 10902/30704 . ISSN   0004-6361. S2CID   244398875.
  32. Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72 (2): 36. arXiv: 2002.01620 . Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN   0004-6264.
  33. Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; Hayes, Cristian R; Majewski, Steven R (13 September 2022). "Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster". Monthly Notices of the Royal Astronomical Society. 516 (2): 2801–2811. arXiv: 2208.10529 . doi: 10.1093/mnras/stac2393 . ISSN   0035-8711.
  34. Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
  35. Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv: astro-ph/0504379 . Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID   16724272.
  36. "GCVS: "==WY Vel"". VizieR. General Catalogue of Variable Stars @ Centre de données astronomiques de Strasbourg . Retrieved 11 February 2024.
  37. Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. Bibcode:2021csss.confE.263N. doi:10.5281/zenodo.4567641.
  38. 1 2 Anugu, Narsireddy; Gies, Douglas R.; Roettenbacher, Rachael M.; Monnier, John D.; Montargés, Miguel; Mérand, Antoine; Baron, Fabien; Schaefer, Gail H.; Shepard, Katherine A.; Kraus, Stefan; Anderson, Matthew D.; Codron, Isabelle; Gardner, Tyler; Gutierrez, Mayra; Köhler, Rainer (September 2024). "Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming". The Astrophysical Journal Letters. 973 (1): L5. arXiv: 2408.11906 . Bibcode:2024ApJ...973L...5A. doi: 10.3847/2041-8213/ad736c . ISSN   2041-8205.
  39. Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. arXiv: 0711.4757 . Bibcode:2008ApJ...676.1016D. doi:10.1086/527350. S2CID   15639297.
  40. Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (2024). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1". Astronomy & Astrophysics. 681: A17. arXiv: 2303.09385 . doi:10.1051/0004-6361/202244635.
  41. Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019). "Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust". Astronomy & Astrophysics. 628: A62. arXiv: 1906.09461 . Bibcode:2019A&A...628A..62M. doi:10.1051/0004-6361/201935069. ISSN   0004-6361. PMC   6739229 . PMID   31511746.
  42. van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv: 1910.02460 . Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID   203836020.
  43. 1 2 3 4 Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus". Astronomy & Astrophysics. 2009: A62. arXiv: 2009.12779 . Bibcode:2020A&A...644A..62C. doi:10.1051/0004-6361/202039188. S2CID   221970180.
  44. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118 (849): 1533–1544. Bibcode:2006PASP..118.1533T. doi: 10.1086/508905 . ISSN   0004-6280. S2CID   121309425.
  45. Messineo, Maria; Figer, Donald F.; Kudritzki, Rolf-Peter; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Chen, C. -H. Rosie (2021). "New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types". The Astronomical Journal. 162 (5): 187. arXiv: 2107.03707 . Bibcode:2021AJ....162..187M. doi: 10.3847/1538-3881/ac116b . S2CID   235765247.
  46. 1 2 3 4 Bergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv: astro-ph/0601366 . Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID   56424665.
  47. González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. (19 December 2023). "The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car and V460 Car". Astronomy & Astrophysics. 683: A19. arXiv: 2312.12521 . doi:10.1051/0004-6361/202348047. ISSN   0004-6361.
  48. Hopkins, Jeffrey L.; Bennett, Philip D.; Pollmann, Ernst (2015). "VV Cephei Eclipse Campaign 2017/19". The Society for Astronomical Sciences 34th Annual Symposium on Telescope Science. Published by Society for Astronomical Sciences. 34: 83. Bibcode:2015SASS...34...83H.
  49. Wright, K. O. (1 April 1977). "The System of VV Cephei Derived from an Analysis of the Hα Line". Journal of the Royal Astronomical Society of Canada. 71: 152. Bibcode:1977JRASC..71..152W. ISSN   0035-872X.
  50. Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1 November 1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series. 95: 589–601. Bibcode:1992A&AS...95..589H. ISSN   0365-0138.
  51. 1 2 De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (1 August 2022). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal. 935 (1): 36. arXiv: 2205.09139 . Bibcode:2022ApJ...935...36D. doi: 10.3847/1538-4357/ac7c6e . ISSN   0004-637X. S2CID   248887540.
  52. 1 2 Siderud, Emelie (2020). Dust emission modelling of AGB stars.
  53. 1 2 Messineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters". Astronomy & Astrophysics. 671: A148. arXiv: 2301.07415 . Bibcode:2023A&A...671A.148M. doi:10.1051/0004-6361/202245587. S2CID   256486848.
  54. 1 2 3 4 5 6 7 8 9 10 11 12 Ramstedt, S.; Olofsson, H. (25 May 2014). "The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB". Astronomy and Astrophysics. 566: A145. arXiv: 1405.6404 . Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. ISSN   0004-6361. S2CID   59125036.
  55. 1 2 3 4 5 6 7 8 9 Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A. (1 September 2015). "New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme". Astronomy & Astrophysics. 581: A60. arXiv: 1506.09065 . Bibcode:2015A&A...581A..60D. doi:10.1051/0004-6361/201526705. ISSN   0004-6361.
  56. 1 2 Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars". Astronomy and Astrophysics. 588: A124. arXiv: 1601.07017 . Bibcode:2016A&A...588A.124L. doi:10.1051/0004-6361/201527049. ISSN   0004-6361. S2CID   62787287.
  57. Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 10. arXiv: 1701.07442 . Bibcode:2017ApJ...837....9N. doi: 10.3847/1538-4357/aa5c82 . S2CID   119213779.
  58. 1 2 Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B. (February 2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types". Astronomy & Astrophysics. 550: A78. arXiv: 1301.2129 . Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400. ISSN   0004-6361.
  59. 1 2 3 4 Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv: astro-ph/0210167 . Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID   33832649.
  60. Decin, L.; Hony, S.; de Koter, A.; Molenberghs, G.; Dehaes, S.; Markwick-Kemper, F. (30 July 2007). "The variable mass loss of the AGB star WX Piscium as traced by the CO J = 1-0 through 7-6 lines and the dust emission". Astronomy & Astrophysics. 475 (1): 233–242. arXiv: 0708.4107 . doi:10.1051/0004-6361:20077737. ISSN   0004-6361.
  61. 1 2 Blum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal. 597 (1): 323–346. arXiv: astro-ph/0307291 . Bibcode:2003ApJ...597..323B. doi:10.1086/378380. ISSN   0004-637X. S2CID   5664467.
  62. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv: 1405.4032 . Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN   0004-637X. S2CID   17085548.
  63. Asaki, Yoshiharu; Maud, Luke T.; Francke, Harold; Nagai, Hiroshi; Petry, Dirk; Fomalont, Edward B.; Humphreys, Elizabeth; Richards, Anita M. S.; Wong, Ka Tat; Dent, William; Hirota, Akihiko; Fernandez, Jose Miguel; Takahashi, Satoko; Hales, Antonio S. (November 2023). "ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep". The Astrophysical Journal. 958 (1): 86. arXiv: 2310.09664 . Bibcode:2023ApJ...958...86A. doi: 10.3847/1538-4357/acf619 . ISSN   0004-637X.
  64. Wallstrom, S. H. J.; et al. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv: 2312.03467 . doi:10.1051/0004-6361/202347632.
  65. Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv: 1304.4800 . Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN   0004-6361. S2CID   56396587.
  66. 1 2 3 4 5 Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
  67. Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (1 January 2023), "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020", Astronomy and Astrophysics, 669: A9, arXiv: 2211.04967 , Bibcode:2023A&A...669A...9M, doi:10.1051/0004-6361/202244924, ISSN   0004-6361
  68. 1 2 3 Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902 (1): 63. arXiv: 2006.09837 . Bibcode:2020ApJ...902...63J. doi: 10.3847/1538-4357/abb8db . ISSN   0004-637X. S2CID   221507952.
  69. MacLeod, Morgan; Blunt, Sarah; De Rosa, Robert J.; Dupree, Andrea K.; Granzer, Thomas; Harper, Graham M.; Huang, Caroline D.; Leiner, Emily M.; Loeb, Abraham (17 September 2024). "Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse". arXiv: 2409.11332 [astro-ph.SR].
  70. Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023). "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020". Astronomy & Astrophysics. 669: 18. arXiv: 2211.04967 . Bibcode:2023A&A...669A...9M. doi:10.1051/0004-6361/202244924. ISSN   0004-6361. S2CID   253406622.
  71. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614: A12. arXiv: 1802.06086 . Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471. ISSN   0004-6361. S2CID   118950270.
  72. Anugu, Narsireddy; et al. (7 August 2024). "CHARA Near-Infrared Imaging of the Yellow Hypergiant Star ρ Cassiopeiae: Convection Cells and Circumstellar Envelope". The Astrophysical Journal. 974 (1): 113. arXiv: 2408.02756v2 . Bibcode:2024ApJ...974..113A. doi: 10.3847/1538-4357/ad6b2b .
  73. Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M. (August 2016). "Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics. 592: A131. arXiv: 1606.01878 . Bibcode:2016A&A...592A.131S. doi:10.1051/0004-6361/201527290. ISSN   0004-6361. PMC   5217166 . PMID   28065983.
  74. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (1 October 2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy and Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166. ISSN   0004-6361.
  75. Groenewegen, M. A. T. (2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics . 635: A33. arXiv: 2002.02186 . Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060. S2CID   211043995.
  76. Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal; Menten, Karl M. (1 November 2021). "V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system". Astronomy & Astrophysics. 655: A32. arXiv: 2106.07427 . Bibcode:2021A&A...655A..32K. doi:10.1051/0004-6361/202141526. ISSN   0004-6361. S2CID   235422695.
  77. 1 2 Tylenda, R. (1 June 2005). "Evolution of V838 Monocerotis during and after the 2002 eruption". Astronomy & Astrophysics. 436 (3): 1009–1020. arXiv: astro-ph/0502060 . Bibcode:2005A&A...436.1009T. doi:10.1051/0004-6361:20052800. ISSN   0004-6361. S2CID   3566688.
  78. Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv: 0809.3185 . Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN   0004-637X. S2CID   15473563.
  79. Libert, Y.; Gerard, E.; Le Bertre, T. (10 September 2007). "The formation of a detached shell around the carbon star Y CVn". Monthly Notices of the Royal Astronomical Society. 380 (3): 1161–1171. arXiv: 0706.4211 . Bibcode:2007MNRAS.380.1161L. doi: 10.1111/j.1365-2966.2007.12154.x .
  80. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv: astro-ph/0404248 . Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN   0004-6361. S2CID   17009595.
  81. 1 2 3 Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (24 September 2019). "Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv: 1908.06997 . Bibcode:2019ApJ...883...89O. doi: 10.3847/1538-4357/ab3d2a . ISSN   1538-4357. S2CID   201103617.
  82. 1 2 Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146 (6): 148. arXiv: 1308.1632 . Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN   0004-6256. S2CID   117872505.
  83. Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv: 1202.3991 . Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472. ISSN   0004-6361. S2CID   11978733.
  84. Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022). "HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere". The Astronomical Journal. 164 (1): 16. Bibcode:2022AJ....164...16H. doi: 10.3847/1538-3881/ac6feb . S2CID   250101470.
  85. 1 2 McDonald, I.; Zijlstra, A. A.; Watson, R. A. (1 October 2017), "Fundamental parameters and infrared excesses of Tycho-Gaia stars", Monthly Notices of the Royal Astronomical Society, 471 (1): 770–791, arXiv: 1706.02208 , Bibcode:2017MNRAS.471..770M, doi: 10.1093/mnras/stx1433 , ISSN   0035-8711 Note: See VizieR catalogue
  86. Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; Hamaguchi, Kenji; Navarete, Felipe; Nielsen, Krister; Madura, Thomas; Moffat, Anthony F. J.; Morris, Patrick; Richardson, Noel D.; Russell, Christopher M. P.; Stevens, Ian R. (1 July 2022). "Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta". The Astrophysical Journal. 933 (2): 175. arXiv: 2205.15116 . Bibcode:2022ApJ...933..175G. doi: 10.3847/1538-4357/ac74c2 . ISSN   0004-637X.
  87. 1 2 Davidson, Kris (5 February 2020). "Radiation-Driven Stellar Eruptions". Galaxies. 8 (1): 10. arXiv: 2009.02340 . Bibcode:2020Galax...8...10D. doi: 10.3390/galaxies8010010 . ISSN   2075-4434.
  88. Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A. (October 2010). "Time, spatial, and spectral resolution of the Hαline-formation region of Deneb and Rigel with the VEGA/CHARA interferometer". Astronomy and Astrophysics. 521: A5. arXiv: 1007.2095 . doi:10.1051/0004-6361/201014509. ISSN   0004-6361.
  89. Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479 (3): 849–858. arXiv: 0712.0040 . Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN   0004-6361. S2CID   103635615.
  90. 1 2 Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (20 December 2017). "Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer". The Astronomical Journal. 155 (1): 30. arXiv: 1712.08109 . Bibcode:2018AJ....155...30B. doi: 10.3847/1538-3881/aa9d8b . ISSN   1538-3881.
  91. Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (1 October 2021). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution". Astronomy & Astrophysics. 654: A19. arXiv: 2109.07153 . Bibcode:2021A&A...654A..19D. doi:10.1051/0004-6361/202140478. ISSN   0004-6361. S2CID   237513623.
  92. 1 2 Nielsen, Krister E.; Airapetian, Vladimir S.; Carpenter, Kenneth G.; Rau, Gioia (1 August 2023). "The Advanced Spectral Library: The Evolution of Chromospheric Wind Characteristics from Noncoronal to Hybrid Giant Stars". The Astrophysical Journal. 953 (1): 16. Bibcode:2023ApJ...953...16N. doi: 10.3847/1538-4357/acdcf1 . ISSN   0004-637X.
  93. Evans, Nancy Remage; Schaefer, Gail H.; Gallenne, Alexandre; Torres, Guillermo; Horch, Elliott P.; Anderson, Richard I.; Monnier, John D.; Roettenbacher, Rachael M.; Baron, Fabien; Anugu, Narsireddy; Davidson, James W.; Kervella, Pierre; Bras, Garance; Proffitt, Charles; Mérand, Antoine (1 August 2024). "The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array". The Astrophysical Journal. 971 (2): 190. arXiv: 2407.09641 . Bibcode:2024ApJ...971..190E. doi: 10.3847/1538-4357/ad5e7a . ISSN   0004-637X.
  94. Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. a. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; D. E. Mkrtichian; Döllinger, M. (1 August 2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv: 1505.03454 . Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. ISSN   0004-6361. S2CID   53324086.
  95. Ramirez, I.; Prieto, C. Allende (20 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv: 1109.4425 . Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN   0004-637X. S2CID   119186472.
  96. Tkachenko, A.; et al. (May 2016), "Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component", Monthly Notices of the Royal Astronomical Society, 458 (2): 1964–1976, arXiv: 1601.08069 , Bibcode:2016MNRAS.458.1964T, doi: 10.1093/mnras/stw255 , S2CID   26945389
  97. McAlister, H. A.; ten Brummelaar, T. A.; Gies; Huang; Bagnuolo, Jr.; Shure; Sturmann; Sturmann; Turner; Taylor; Berger; Baines; Grundstrom; Ogden; Ridgway; Van Belle; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)". The Astrophysical Journal. 628 (1): 439–452. arXiv: astro-ph/0501261 . Bibcode:2005ApJ...628..439M. doi:10.1086/430730. S2CID   6776360.
  98. Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761 (1): L3. arXiv: 1211.6055 . Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN   0004-637X. S2CID   17950155.
  99. Bouchaud, K.; Domiciano de Souza, A.; Rieutord, M.; Reese, D. R.; Kervella, P. (1 January 2020). "A realistic two-dimensional model of Altair". Astronomy and Astrophysics. 633: A78. arXiv: 1912.03138 . Bibcode:2020A&A...633A..78B. doi:10.1051/0004-6361/201936830. ISSN   0004-6361.
  100. Davis, J.; et al. (October 2010). "The Angular Diameter and Fundamental Parameters of Sirius A". Publications of the Astronomical Society of Australia. 28: 58–65. arXiv: 1010.3790 . doi:10.1071/AS10010.
  101. Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (14 June 2021). "Precision Millimeter Astrometry of the α Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv: 2104.10086 . Bibcode:2021AJ....162...14A. doi: 10.3847/1538-3881/abfaff . ISSN   0004-6256.
  102. Kamath, D.; Wood, P. R.; Van Winckel, H. (1 December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 454 (2): 1468–1502. arXiv: 1508.00670 . doi: 10.1093/mnras/stv1202 . ISSN   0035-8711.
  103. 1 2 3 4 5 6 Beasor, Emma R.; Smith, Nathan (1 May 2022). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933 (1): 41. arXiv: 2205.02207 . Bibcode:2022ApJ...933...41B. doi: 10.3847/1538-4357/ac6dcf . S2CID   248512934.
  104. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal. 942 (2): 35. arXiv: 2211.14147 . Bibcode:2023ApJ...942...69M. doi: 10.3847/1538-4357/aca665 . S2CID   254018399.
  105. 1 2 3 4 5 Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (11 February 2017). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv: 1610.05761 . Bibcode:2017MNRAS.465..403G. doi: 10.1093/mnras/stw2708 . ISSN   0035-8711.
  106. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Groenewegen, M. A. T.; Sloan, G. C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609: A114. arXiv: 1711.07803 . Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089. ISSN   0004-6361. S2CID   59327105.
  107. 1 2 3 University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University.
  108. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Neugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (8 September 2020). "The Red Supergiant Binary Fraction of the Large Magellanic Cloud". The Astrophysical Journal. 900 (2): 118. arXiv: 2007.15852 . Bibcode:2020ApJ...900..118N. doi: 10.3847/1538-4357/ababaa . ISSN   1538-4357.
  109. 1 2 Munoz-Sanchez, G.; de Wit, S.; Bonanos, A. Z.; Antoniadas, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. (21 May 2024). "Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud". Astronomy & Astrophysics. 690: A99. arXiv: 2405.11019 . Bibcode:2024A&A...690A..99M. doi:10.1051/0004-6361/202450737.
  110. 1 2 3 4 5 Chen, Kaitlyn M.; Dorn-Wallenstein, Trevor Z. (March 2024). "A Spectroscopic Hunt for Post-red Supergiants in the Large Magellanic Cloud. I. Preliminary Results". Research Notes of the AAS. 8 (3): 75. arXiv: 2403.08048 . Bibcode:2024RNAAS...8...75C. doi: 10.3847/2515-5172/ad32bb . ISSN   2515-5172. S2CID   268378990.
  111. 1 2 3 4 5 6 7 8 de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv: 2209.11239 . Bibcode:2023A&A...669A..86D. doi:10.1051/0004-6361/202243394. S2CID   252519285.
  112. 1 2 3 4 Martin, John C.; Humphreys, Roberta M. (30 October 2023). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal. 166 (5): 214. Bibcode:2023AJ....166..214M. doi: 10.3847/1538-3881/ad011e . ISSN   0004-6256.
  113. 1 2 García-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I.; van Raai, M. A. (8 October 2009). "Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds". The Astrophysical Journal Letters. 705 (1): L31–L35. arXiv: 0909.4391 . Bibcode:2009ApJ...705L..31G. doi:10.1088/0004-637X/705/1/L31. hdl:1885/29244. ISSN   0004-637X. S2CID   17864885.
  114. 1 2 3 4 Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics. 624: 13. arXiv: 1902.09891 . Bibcode:2019A&A...624A.128B. doi:10.1051/0004-6361/201834564. S2CID   244683559.
  115. 1 2 Munoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant". arXiv: 2411.19329 [astro-ph.SR].
  116. Ohnaka, K.; Driebe, T.; Hofmann, K. -H.; Weigelt, T.; Wittkowski, M. (16 April 2008). "Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud". Astronomy and Astrophysics. 484 (2): 371–379. arXiv: 0803.3823 . Bibcode:2008A&A...484..371O. doi:10.1051/0004-6361:200809469. ISSN   0004-6361. S2CID   10451475.
  117. Ohnaka, Keiichi; Driebe, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd; Wittkowski, Markus (March 2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union. 256: 454–458. Bibcode:2009IAUS..256..454O. doi: 10.1017/S1743921308028858 . ISSN   1743-9213. S2CID   120287846.
  118. 1 2 Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv: 0903.2260 . Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID   18074349.
  119. Levesque, E. M. (June 2010). The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103. arXiv: 0911.4720 . Bibcode:2010ASPC..425..103L. S2CID   8921166.
  120. Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society . 465 (1): 403–433. arXiv: 1610.05761 . Bibcode:2017MNRAS.465..403G. doi: 10.1093/mnras/stw2708 . S2CID   11352637.
  121. 1 2 3 4 5 Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (1 November 2022). "The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants". The Astrophysical Journal. 940 (1): 27. arXiv: 2206.11917 . Bibcode:2022ApJ...940...27D. doi: 10.3847/1538-4357/ac79b2 . ISSN   0004-637X.
  122. 1 2 3 Beasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (21 September 2018). "A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112". Monthly Notices of the Royal Astronomical Society. 479 (3): 3101–3105. arXiv: 1806.07399 . Bibcode:2018MNRAS.479.3101B. doi: 10.1093/mnras/sty1744 . ISSN   0035-8711.
  123. Glatzel, Wolfgang; Kraus, Michaela (23 March 2024). "Instabilities in the yellow hypergiant domain". Monthly Notices of the Royal Astronomical Society. 529 (4): 4947–4957. arXiv: 2403.14315 . doi: 10.1093/mnras/stae861 . ISSN   0035-8711.
  124. Lamers, H. J. G. L. M. (1 January 1995). "Observations and Interpretation of Luminous Blue Variables". IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation. 83: 176. Bibcode:1995ASPC...83..176L.
  125. 1 2 Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi: 10.1086/500804 . ISSN   0004-637X. S2CID   121769413.
  126. Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael; Driessen, Florian A.; García, Miriam; Geen, Sam; Gräfener, Götz; Hawcroft, Calum; Kaper, Lex; Keszthelyi, Zsolt (1 July 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS – III. The most massive stars and their clumped winds". Astronomy & Astrophysics. 663: A36. arXiv: 2202.11080 . Bibcode:2022A&A...663A..36B. doi:10.1051/0004-6361/202142742. ISSN   0004-6361. S2CID   247025548.
  127. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆". Astronomy & Astrophysics. 565: A27. arXiv: 1401.5474 . Bibcode:2014A&A...565A..27H. doi: 10.1051/0004-6361/201322696 . ISSN   0004-6361. S2CID   55123954.
  128. Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (July 2017). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 591: A22. arXiv: 1604.01022 . Bibcode:2016A&A...591A..22S. doi: 10.1051/0004-6361/201527916 . ISSN   0004-6361. S2CID   119255408.
  129. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Drout, Maria R.; Massey, Philip; Meynet, Georges (April 2012). "THE YELLOW AND RED SUPERGIANTS OF M33*". The Astrophysical Journal. 750 (2): 97. arXiv: 1203.0247 . Bibcode:2012ApJ...750...97D. doi: 10.1088/0004-637X/750/2/97 . ISSN   0004-637X. S2CID   119160120.
  130. Massey, Philip; Evans, Kate Anne (August 2016). "The Red Supergiant Content of M31*". The Astrophysical Journal. 826 (2): 224. arXiv: 1605.07900 . Bibcode:2016ApJ...826..224M. doi: 10.3847/0004-637X/826/2/224 . ISSN   0004-637X.
  131. 1 2 Massey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420–440. arXiv: 0907.3767 . Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420. S2CID   119293010 . Retrieved 30 September 2023.
  132. Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (1 May 2017). "Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates". Astronomy & Astrophysics. 601: A76. arXiv: 1612.06853 . Bibcode:2017A&A...601A..76K. doi: 10.1051/0004-6361/201629146 . ISSN   0004-6361. S2CID   55559261.
  133. Valeev, A. F.; Sholukhova, O.; Fabrika, S. (11 June 2009). "A new luminous variable in M33". Monthly Notices of the Royal Astronomical Society: Letters. 396 (1): L21–L25. arXiv: 0903.5222 . Bibcode:2009MNRAS.396L..21V. doi: 10.1111/j.1745-3933.2009.00654.x . S2CID   14666975.
  134. 1 2 3 Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv: 1909.13378 . Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN   0004-6361. S2CID   203593402.
  135. 1 2 3 4 5 Neugent, Kathryn (2022). "Locating Red Supergiants in the Galaxy NGC 6822". The Astronomical Journal. 163 (2): 70. arXiv: 2112.03990 . Bibcode:2022AJ....163...70D. doi: 10.3847/1538-3881/ac410e .
  136. González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (23 June 2021). "The temperatures of red supergiants in low-metallicity environments". Monthly Notices of the Royal Astronomical Society. 505 (3): 4422–4443. arXiv: 2106.01807 . doi: 10.1093/mnras/stab1611 . ISSN   0035-8711.
  137. Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (1 February 2018). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854 (2): 117. arXiv: 1712.06594 . Bibcode:2018ApJ...854..117J. doi: 10.3847/1538-4357/aaa542 . ISSN   0004-637X. S2CID   119199303.
  138. Abbott, Jay Brian (2004). "Quantitative spectroscopic studies of Wolf-Rayet stars in local group galaxies". Bibcode:2004PhDT.......161A.{{cite journal}}: Cite journal requires |journal= (help)
  139. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 de Wit, S.; Bonanos, A. Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G. (19 February 2024), "Investigating episodic mass loss in evolved massive stars", Astronomy & Astrophysics, 689: A46, arXiv: 2402.12442 , doi:10.1051/0004-6361/202449607
  140. "[TSK2008] 236". SIMBAD . Centre de données astronomiques de Strasbourg.
  141. 1 2 3 Humphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (January 2019). "Luminous and Variable Stars in NGC 2403 and M81". The Astronomical Journal . 157 (1): 22. arXiv: 1811.06559 . Bibcode:2019AJ....157...22H. doi: 10.3847/1538-3881/aaf1ac . ISSN   0004-6256. S2CID   119379139.
  142. 1 2 Bond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M.; Masci, Frank J. (April 2022). "Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*". The Astrophysical Journal. 928 (2): 158. arXiv: 2202.11040 . Bibcode:2022ApJ...928..158B. doi: 10.3847/1538-4357/ac5832 . ISSN   0004-637X.
  143. Zachary, Gazak J.; Kudritzki, Rolf; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertand; Bresolin, Fabio; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J. (2 June 2015). "Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300". The Astrophysical Journal. 805 (2): 9. arXiv: 1505.00871 . Bibcode:2015ApJ...805..182G. doi: 10.1088/0004-637X/805/2/182 . ISSN   0004-637X. S2CID   14681047.
  144. Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.
  145. "[HMR2016] N4038 13068". SIMBAD . Centre de données astronomiques de Strasbourg.
  146. "[HMR2016] N4038 46842". SIMBAD . Centre de données astronomiques de Strasbourg.
  147. Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (25 July 2023). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv: 2304.01173 . Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. ISSN   0027-8424. PMC   10372643 . PMID   37433001.
  148. Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv: 1102.5098 . doi: 10.1111/j.1365-2966.2011.18591.x . S2CID   119239346.
  149. Diego, J. M.; et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST". Astronomy & Astrophysics. 672: A3. arXiv: 2210.06514 . Bibcode:2023A&A...672A...3D. doi:10.1051/0004-6361/202245238. S2CID   252873244.
  150. 1 2 Diego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022). "Godzilla, a monster lurks in the Sunburst galaxy". Astronomy & Astrophysics. 665: A134. arXiv: 2203.08158 . Bibcode:2022A&A...665A.134D. doi:10.1051/0004-6361/202243605. ISSN   0004-6361. S2CID   247476158.
  151. "Scientists face down 'Godzilla', the most luminous star known". Nature. 610 (7930): 10. 6 October 2022. Bibcode:2022Natur.610T..10.. doi: 10.1038/d41586-022-03054-3 . ISSN   0028-0836.
  152. Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario; Adams, Nathan; Meena, Ashish K.; Willner, S. P.; Zitrin, Adi; Cohen, Seth H.; D'Silva, Jordan C. J.; Jansen, Rolf A. (19 September 2023). "JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models". Astronomy & Astrophysics. 679: A31. arXiv: 2307.10363 . Bibcode:2023A&A...679A..31D. doi:10.1051/0004-6361/202347556. ISSN   0004-6361. S2CID   259991552.
  153. Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping (May 2019). "The evolution of luminous red nova AT 2017jfs in NGC 4470". Astronomy & Astrophysics. 625: L8. arXiv: 1906.00811 . Bibcode:2019A&A...625L...8P. doi:10.1051/0004-6361/201935511. ISSN   0004-6361. S2CID   155703569.
  154. Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, J.; Turatto, M. (9 January 2018). "SNhunt151: an explosive event inside a dense cocoon". Monthly Notices of the Royal Astronomical Society. 475 (2): 2614–2631. arXiv: 1801.03040 . Bibcode:2018MNRAS.475.2614E. doi: 10.1093/mnras/sty009 . ISSN   0035-8711. S2CID   119519504.
  155. Elias-Rosa, N.; et al. (7 September 2016). "Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)". Monthly Notices of the Royal Astronomical Society. 463 (4): 3894–3920. arXiv: 1606.09024 . Bibcode:2016MNRAS.463.3894E. doi: 10.1093/mnras/stw2253 . ISSN   0035-8711. S2CID   119205955.
  156. Cai, Y. -Z.; et al. (3 December 2019). "The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon". Astronomy & Astrophysics. 631: 9. arXiv: 1909.13147 . Bibcode:2019A&A...632L...6C. doi:10.1051/0004-6361/201936749. ISSN   0004-6361. S2CID   203593575.
  157. Charalampopoulos, P.; et al. (22 January 2024). "The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a tidal disruption of a very low-mass star". Astronomy & Astrophysics. 689: A350. arXiv: 2401.11773v2 . Bibcode:2024A&A...689A.350C. doi:10.1051/0004-6361/202449296.
  158. Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay; Fremling, Christoffer; Yao, Yuhan; Fruchter, Andrew; Rubin, David; Barbarino, Cristina; Sollerman, Jesper; Miller, Adam A. (26 July 2019). "Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor". The Astrophysical Journal. 880 (2): L20. arXiv: 1904.07857 . Bibcode:2019ApJ...880L..20J. doi: 10.3847/2041-8213/ab2c05 . ISSN   2041-8213.
  159. Smith, Nathan; Frew, David J. (2011). "A revised historical light curve of Eta Carinae and the timing of close periastron encounters". Monthly Notices of the Royal Astronomical Society. 415 (3): 2009–2019. arXiv: 1010.3719 . Bibcode:2011MNRAS.415.2009S. doi: 10.1111/j.1365-2966.2011.18993.x . S2CID   118614725.
  160. 1 2 Cai Y. -Z.; et al. (27 October 2021). "Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions". Astronomy & Astrophysics . 654: 30. arXiv: 2108.05087 . Bibcode:2021A&A...654A.157C. doi:10.1051/0004-6361/202141078. ISSN   0004-6361. S2CID   236976052.
  161. Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart; Stevance, Heloise F. (4 April 2022). "Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event". The Astrophysical Journal. 928 (2): 21. arXiv: 2110.09546 . Bibcode:2022ApJ...928..138P. doi: 10.3847/1538-4357/ac562d . ISSN   1538-4357. S2CID   239024685.
  162. 1 2 Soker, Noam; Kaplan, Noa (May 2021). "Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering". Research in Astronomy and Astrophysics. 21 (4): 9. arXiv: 2007.06472 . Bibcode:2021RAA....21...90S. doi:10.1088/1674-4527/21/4/90. ISSN   1674-4527. S2CID   220496730.
  163. Stritzinger, M. D; et al. (22 July 2020). "The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120". Astronomy & Astrophysics. 639: 17. arXiv: 2005.00319 . Bibcode:2020A&A...639A.103S. doi:10.1051/0004-6361/202038018. ISSN   0004-6361. S2CID   249866047.
  164. Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Isern, J.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Lundqvist, P.; Mattila, S.; McCully, C.; Reynolds, T. M.; Somero, A.; Stritzinger, M. D.; Terreran, G. (1 August 2018). "AT 2017be – a new member of the class of intermediate-luminosity red transients". Monthly Notices of the Royal Astronomical Society. 480 (3): 3424–3445. arXiv: 1807.11676 . Bibcode:2018MNRAS.480.3424C. doi: 10.1093/mnras/sty2070 . ISSN   0035-8711. S2CID   118946285.
  165. Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (1 August 2020). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. arXiv: 2003.02242 . doi: 10.1093/mnras/staa1629 . ISSN   0035-8711.
  166. Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C.; Elias-Rosa, N.; Flewelling, H.; Fremling, C.; Harmanen, J.; Huber, M.; Jerkstand, A.; Kangas, T.; Kuncarayakti, H.; Magee, M.; Magnier, E.; Polshaw, J.; Smith, K. W.; Sollerman, J.; Tomasella, L. (7 September 2015). "On the triple peaks of SNHunt248 in NGC 5806". Astronomy & Astrophysics. 581: 7. arXiv: 1508.04730 . Bibcode:2015A&A...581L...4K. doi:10.1051/0004-6361/201526631. ISSN   0004-6361. S2CID   85321.
  167. Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013). "Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71". Astronomy & Astrophysics. 555: A116. arXiv: 1303.1367 . Bibcode:2013A&A...555A.116M. doi:10.1051/0004-6361/201321323. ISSN   0004-6361. S2CID   67775752.
  168. Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D.; Wyatt, Samuel; Zheng, WeiKang (28 February 2023). "Repeating periodic eruptions of the supernova impostor SN 2000ch". Monthly Notices of the Royal Astronomical Society. 521 (2): 1941–1957. arXiv: 2212.00113 . Bibcode:2023MNRAS.521.1941A. doi: 10.1093/mnras/stad630 . ISSN   0035-8711. S2CID   254125316.
  169. 1 2 Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N.; Sand, David J.; Wyatt, Samuel; Zhang, WeiKang (7 September 2023). "Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559". Monthly Notices of the Royal Astronomical Society. 526 (1): 456–472. arXiv: 2212.09708 . Bibcode:2023MNRAS.526..456A. doi: 10.1093/mnras/stad2702 . ISSN   0035-8711. S2CID   254854145.
  170. Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F.; Reguitti, A.; Tomasella, L.; Valerin, G.; Yang, S. (May 2023). "Hidden shock powering the peak of SN 2020faa". Astronomy & Astrophysics. 673: 14. arXiv: 2302.12527 . Bibcode:2023A&A...673A.127S. doi:10.1051/0004-6361/202245781. ISSN   0004-6361. S2CID   257205910.
  171. "Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101". astro.paperswithcode.com. Retrieved 25 November 2023.
  172. Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A.; Kasliwal, M.; Coughlin, M.; Perley, D.; Fremling, C.; Kulkarni, S. (2024). "The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss". Monthly Notices of the Royal Astronomical Society. 534: 271–280. arXiv: 2309.10022 . doi: 10.1093/mnras/stae2012 . S2CID   262054068.
  173. Kilpatrick, Charles D.; et al. (29 June 2023). "EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment". Monthly Notices of the Royal Astronomical Society. 524 (2): 2161–2185. arXiv: 2307.00550 . Bibcode:2023MNRAS.524.2161K. doi: 10.1093/mnras/stad1954 . ISSN   0035-8711. S2CID   259306203.
  174. Shrestha, Manisha; et al. (2024). "Evidence of weak circumstellar medium interaction in the Type II SN 2023axu". The Astrophysical Journal. 961 (2): 247. arXiv: 2310.00162 . Bibcode:2024ApJ...961..247S. doi: 10.3847/1538-4357/ad11e1 .
  175. Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023). "Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855". The Astrophysical Journal. 959 (2): L32. arXiv: 2310.04827 . Bibcode:2023ApJ...959L..32Y. doi: 10.3847/2041-8213/ad0cc3 .
  176. SIMBAD.
  177. Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (1 July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv: 1304.4800 . Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN   0004-6361.
  178. 1 2 3 4 5 6 7 8 van Leeuwen, F. (1 November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv: 0708.1752 . Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN   0004-6361.
  179. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K. -H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (1 July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy and Astrophysics. 421 (2): 703–714. arXiv: astro-ph/0404248 . Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN   0004-6361.
  180. 1 2 Ramírez, I.; Allende Prieto, C. (1 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv: 1109.4425 . Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN   0004-637X.
  181. 1 2 Wallstrom, S. H. J.; Danilovich, T.; Muller, H. S. P.; Gottlieb, C. A.; Maes, S.; Van de Sande, M.; Decin, L.; Richards, A. M. S.; Baudry, A.; Bolte, J.; Ceulemans, T.; De Ceuster, F.; de Koter, A.; Mellah, I. El; Esseldeurs, M. (6 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv: 2312.03467 . doi:10.1051/0004-6361/202347632. ISSN   0004-6361.
  182. Soubiran, C.; Creevey, O. L.; Lagarde, N.; Brouillet, N.; Jofré, P.; Casamiquela, L.; Heiter, U.; Aguilera-Gómez, C.; Vitali, S.; Worley, C.; de Brito Silva, D. (1 February 2024). "Gaia FGK benchmark stars: Fundamental Teff and log g of the third version". Astronomy and Astrophysics. 682: A145. arXiv: 2310.11302 . Bibcode:2024A&A...682A.145S. doi:10.1051/0004-6361/202347136. ISSN   0004-6361. Note: See VizieR catalogue
  183. 1 2 3 4 5 6 7 Mozurkewich, D.; Armstrong, J. T.; Hindsley, R. B.; Quirrenbach, A.; Hummel, C. A.; Hutter, D. J.; Johnston, K. J.; Hajian, A. R.; Elias II, Nicholas M.; Buscher, D. F.; Simon, R. S. (November 2003). "Angular Diameters of Stars from the Mark III Optical Interferometer". The Astronomical Journal. 126 (5): 2502–2520. Bibcode:2003AJ....126.2502M. doi:10.1086/378596. ISSN   0004-6256.
  184. Gatewood, George (1 July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal. 136 (1): 452–460. Bibcode:2008AJ....136..452G. doi:10.1088/0004-6256/136/1/452. ISSN   0004-6256.
  185. 1 2 3 4 5 6 Bailer-Jones, C. A. L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. (2021). "Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3". The Astronomical Journal. 161 (3): 147. arXiv: 2012.05220 . Bibcode:2021AJ....161..147B. doi: 10.3847/1538-3881/abd806 . S2CID   228063812. Data about this star can be seen here.
  186. Arroyo-Torres, B.; et al. (June 2014). "VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters". Astronomy & Astrophysics. 566: 11. arXiv: 1404.7384 . Bibcode:2014A&A...566A..88A. doi:10.1051/0004-6361/201323264. S2CID   16778588. A88.
  187. 1 2 3 4 5 6 7 Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN   0004-6361.
  188. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  189. Min, Cheulhong; Matsumoto, Naoko; Kim, Mi Kyoung; Hirota, Tomoya; Shibata, Katsunori M.; Cho, Se-Hyung; Shizugami, Makoto; Honma, Mareki (1 April 2014). "Accurate Parallax Measurement toward the Symbiotic Star R Aquarii". Publications of the Astronomical Society of Japan. 66 (2): 38. arXiv: 1401.5574 . doi:10.1093/pasj/psu003. ISSN   2053-051X.
  190. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  191. Perrin, G.; Ridgway, S. T.; Verhoelst, T.; Schuller, P. A.; Traub, W. A.; Millan-Gabet, R.; Lacasse, M. G. (1 June 2005). "Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band". Astronomy & Astrophysics. 436 (1): 317–324. arXiv: astro-ph/0502415 . Bibcode:2005A&A...436..317P. doi:10.1051/0004-6361:20042313. ISSN   0004-6361.
  192. Davies, Ben; Beasor, Emma R. (2020). "The 'red supergiant problem': The upper luminosity boundary of Type II supernova progenitors". Monthly Notices of the Royal Astronomical Society. 493: 468–476. arXiv: 2001.06020 . doi: 10.1093/mnras/staa174 . Retrieved 3 October 2024.
  193. "HD 6860 Overview". NASA Exoplanet Archive . Retrieved 7 June 2024.
  194. Wittkowski, M.; et al. (December 2006), "Tests of stellar model atmospheres by optical interferometry. IV. VINCI interferometry and UVES spectroscopy of Menkar", Astronomy and Astrophysics, 460 (3): 855–864, arXiv: astro-ph/0610150 , Bibcode:2006A&A...460..855W, doi:10.1051/0004-6361:20066032, S2CID   16525827
  195. Jones, Olivia; Woods, Paul; Kemper, Franziska; Kraemer, Elena; Sloan, G.; Srinivasan, Sivakrishnan; Oliveira, Joana; van Loon, Jacco; Boyer, Martha; Sargent, Benjamin; Mc Donald, I.; Meixner, Margaret; Zijlstra, A.; Ruffel, Paul; Lagadec, Eric; Pauly, Tyler (7 May 2017). "The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III". Monthly Notices of the Royal Astronomical Society. 470 (3): 3250–3282. arXiv: 1705.02709 . doi: 10.1093/mnras/stx1101 . Retrieved 23 June 2022.
  196. El-Badry, Kareem (22 April 2024). "On the formation of a 33 solar-mass black hole in a low-metallicity binary". The Open Journal of Astrophysics. 7: 38. arXiv: 2404.13047 . Bibcode:2024OJAp....7E..38E. doi:10.33232/001c.117652.