Classical Cepheid variable

Last updated
Hertzsprung-Russell diagram showing the location of several types of variable stars superimposed on a display of the different luminosity classes. HR-vartype.svg
Hertzsprung–Russell diagram showing the location of several types of variable stars superimposed on a display of the different luminosity classes.

Classical Cepheids are a type of Cepheid variable star. They are young, population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes ranging from a few tenths of a magnitude up to about 2 magnitudes. Classical Cepheids are also known as Population I Cepheids, Type I Cepheids, and Delta Cepheid variables.

Contents

There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, [1] [2] securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales. [3] [4] [5] [6] Hubble Space Telescope (HST) observations of classical Cepheid variables have enabled firmer constraints on Hubble's law, which describes the expansion rate of the observable Universe. [3] [4] [6] [7] [8] Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the local spiral arm structure and the Sun's distance from the galactic plane. [5]

Around 800 classical Cepheids are known in the Milky Way galaxy, out of an expected total of over 6,000. Several thousand more are known in the Magellanic Clouds, with more discovered in other galaxies; [9] the Hubble Space Telescope has identified some in NGC 4603, which is 100 million light years distant. [10]

Properties

The evolutionary track of 5 M star crossing the instability strip during a helium burning blue loop Evolutionary track 5m.svg
The evolutionary track of 5 M star crossing the instability strip during a helium burning blue loop

Classical Cepheid variables are 4–20 times more massive than the Sun, [11] and around 1,000 to 50,000 (over 200,000 for the unusual V810 Centauri) times more luminous. [12] Spectroscopically they are bright giants or low luminosity supergiants of spectral class F6 – K2. The temperature and spectral type vary as they pulsate. Their radii are a few tens to a few hundred times that of the sun. More luminous Cepheids are cooler and larger and have longer periods. Along with the temperature changes their radii also change during each pulsation (e.g. by ~25% for the longer-period l Car), resulting in brightness variations up to two magnitudes. The brightness changes are more pronounced at shorter wavelengths. [13]

Cepheid variables may pulsate in a fundamental mode, the first overtone, or rarely a mixed mode. Pulsations in an overtone higher than first are rare but interesting. [2] The majority of classical Cepheids are thought to be fundamental mode pulsators, although it is not easy to distinguish the mode from the shape of the light curve. Stars pulsating in an overtone are more luminous and larger than a fundamental mode pulsator with the same period. [14]

When an intermediate mass star (IMS) first evolves away from the main sequence, it crosses the instability strip very rapidly while the hydrogen shell is still burning. When the helium core ignites in an IMS, it may execute a blue loop and crosses the instability strip again, once while evolving to high temperatures and again evolving back towards the asymptotic giant branch. Stars more massive than about 8–12 M start core helium burning before reaching the red-giant branch and become red supergiants, but may still execute a blue loop through the instability strip. The duration and even existence of blue loops is very sensitive to the mass, metallicity, and helium abundance of the star. In some cases, stars may cross the instability strip for a fourth and fifth time when helium shell burning starts.[ citation needed ] The rate of change of the period of a Cepheid variable, along with chemical abundances detectable in the spectrum, can be used to deduce which crossing a particular star is making. [15]

Classical Cepheid variables were B type main-sequence stars earlier than about B7, possibly late O stars, before they ran out of hydrogen in their cores. More massive and hotter stars develop into more luminous Cepheids with longer periods, although it is expected that young stars within our own galaxy, at near solar metallicity, will generally lose sufficient mass by the time they first reach the instability strip that they will have periods of 50 days or less. Above a certain mass, 20–50 M depending on metallicity, red supergiants will evolve back to blue supergiants rather than execute a blue loop, but they will do so as unstable yellow hypergiants rather than regularly pulsating Cepheid variables. Very massive stars never cool sufficiently to reach the instability strip and do not ever become Cepheids. At low metallicity, for example in the Magellanic Clouds, stars can retain more mass and become more luminous Cepheids with longer periods. [12]

Light curves

Delta Cephei lightcurve Delta Cephei lightcurve.jpg
Delta Cephei lightcurve
Phase-folded UBVRI light curves of Delta Cephei, prototype of the classical Cepheids, showing magnitude versus pulsation phase Delta cephei ubvri engle 2014.png
Phase-folded UBVRI light curves of Delta Cephei, prototype of the classical Cepheids, showing magnitude versus pulsation phase

A Cepheid light curve is typically asymmetric with a rapid rise to maximum light followed by a slower fall to minimum (e.g. Delta Cephei). This is due to the phase difference between the radius and temperature variations and is considered characteristic of a fundamental mode pulsator, the most common type of type I Cepheid. In some cases the smooth pseudo-sinusoidal light curve shows a "bump", a brief slowing of the decline or even a small rise in brightness, thought to be due to a resonance between the fundamental and second overtone. The bump is most commonly seen on the descending branch for stars with periods around 6 days (e.g. Eta Aquilae). As the period increases, the location of the bump moves closer to the maximum and may cause a double maximum, or become indistinguishable from the primary maximum, for stars having periods around 10 days (e.g. Zeta Geminorum). At longer periods the bump can be seen on the ascending branch of the light curve (e.g. X Cygni), [17] but for period longer than 20 days the resonance disappears.

A minority of classical Cepheids show nearly symmetric sinusoidal light curves. These are referred to as s-Cepheids, usually have lower amplitudes, and commonly have short periods. The majority of these are thought to be first overtone (e.g. X Sagittarii), or higher, pulsators, although some unusual stars apparently pulsating in the fundamental mode also show this shape of light curve (e.g. S Vulpeculae). Stars pulsating in the first overtone are expected to only occur with short periods in our galaxy, although they may have somewhat longer periods at lower metallicity, for example in the Magellanic Clouds. Higher overtone pulsators and Cepheids pulsating in two overtones at the same time are also more common in the Magellanic Clouds, and they usually have low amplitude somewhat irregular light curves. [2] [18]

Discovery

Historical light curves of W Sagittarii and Eta Aquilae PSM V69 D184 Light curves of variable stars.png
Historical light curves of W Sagittarii and Eta Aquilae

On September 10, 1784 Edward Pigott detected the variability of Eta Aquilae, the first known representative of the class of classical Cepheid variables. However, the namesake for classical Cepheids is the star Delta Cephei, discovered to be variable by John Goodricke a month later. [19] Delta Cephei is also of particular importance as a calibrator for the period-luminosity relation since its distance is among the most precisely established for a Cepheid, thanks in part to its membership in a star cluster [20] [21] and the availability of precise Hubble Space Telescope and Hipparcos parallaxes. [22]

Period-luminosity relation

The two Period-Luminosity Characteristics of Classic and Type II Cepheids Period-Luminosity Relation for Cepheids.png
The two Period-Luminosity Characteristics of Classic and Type II Cepheids

A classical Cepheid's luminosity is directly related to its period of variation. The longer the pulsation period, the more luminous the star. The period-luminosity relation for classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt in an investigation of thousands of variable stars in the Magellanic Clouds. [23] She published it in 1912 [24] with further evidence. Once the period-luminosity relation is calibrated, the luminosity of a given Cepheid whose period is known can be established. Their distance is then found from their apparent brightness. The period-luminosity relation has been calibrated by many astronomers throughout the twentieth century, beginning with Hertzsprung. [25] Calibrating the period-luminosity relation has been problematic; however, a firm Galactic calibration was established by Benedict et al. 2007 using precise HST parallaxes for 10 nearby classical Cepheids. [26] Also, in 2008, ESO astronomers estimated with a precision within 1% the distance to the Cepheid RS Puppis, using light echos from a nebula in which it is embedded. [27] However, that latter finding has been actively debated in the literature. [28]

The following experimental correlations between a Population I Cepheid's period P and its mean absolute magnitude Mv was established from Hubble Space Telescope trigonometric parallaxes for 10 nearby Cepheids:

[26]

with P measured in days.

The following relations can also be used to calculate the distance d to classical Cepheids:

[26]

or

[29]

I and V represent near infrared and visual apparent mean magnitudes, respectively. The distance d is in parsecs.

Small amplitude Cepheids

Classical Cepheid variables with visual amplitudes below 0.5 magnitudes, almost symmetrical sinusoidal light curves, and short periods, have been defined as a separate group called small amplitude Cepheids. They receive the acronym DCEPS in the GCVS. Periods are generally less than 7 days, although the exact cutoff is still debated. [30] The term s-Cepheid is used for short period small amplitude Cepheids with sinusoidal light curves that are considered to be first overtone pulsators. They are found near the red edge of the instability strip. Some authors use s-Cepheid as a synonym for the small amplitude DECPS stars, while others prefer to restrict it only to first overtone stars. [31] [32]

Small amplitude Cepheids (DCEPS) include Polaris and FF Aquilae, although both may be pulsating in the fundamental mode. Confirmed first overtone pulsators include BG Crucis and BP Circini. [33] [34]

Uncertainties in Cepheid determined distances

Chief among the uncertainties tied to the Cepheid distance scale are: the nature of the period-luminosity relation in various passbands, the impact of metallicity on both the zero-point and slope of those relations, and the effects of photometric contamination (blending) and a changing (typically unknown) extinction law on classical Cepheid distances. All these topics are actively debated in the literature. [4] [7] [12] [35] [36] [37] [38] [39] [40] [41] [42] [43]

These unresolved matters have resulted in cited values for the Hubble constant ranging between 60 km/s/Mpc and 80 km/s/Mpc. [3] [4] [6] [7] [8] Resolving this discrepancy is one of the foremost problems in astronomy since the cosmological parameters of the Universe may be constrained by supplying a precise value of the Hubble constant. [6] [8]

Examples

Several classical Cepheids have variations that can be recorded with night-by-night, trained naked eye observation, including the prototype Delta Cephei in the far north, Zeta Geminorum and Eta Aquilae ideal for observation around the tropics (near the ecliptic and thus zodiac) and in the far south Beta Doradus. The closest class member is the North Star (Polaris) whose distance is debated and whose present variability is approximately 0.05 of a magnitude. [6]

Designation (name)ConstellationDiscoveryMaximum Apparent magnitude (mV) [44] Minimum Apparent magnitude (mV) [44] Period (days) [44] Spectral classComment
η Aql Aquila Edward Pigott, 17843m.484m.3907.17664F6 Ibv 
FF Aql Aquila Charles Morse Huffer, 19275m.185m.6804.47F5Ia-F8Ia 
TT Aql Aquila 6m.467m.713.7546F6-G5 
U Aql Aquila 6m.086m.8607.02393F5I-II-G1 
T Ant Antlia 5m.005m.8205.898G5possibly has unseen companion. Previously thought to be a type II Cepheid [45]
RT Aur Auriga 5m.005m.8203.73F8Ibv 
l Car Carina  3m.284m.1835.53584G5 Iab/Ib 
δ Cep Cepheus John Goodricke, 17843m.484m.3705.36634F5Ib-G2Ibdouble star, visible in binoculars
AX Cir Circinus  5m.656m.0905.273268F2-G2IIspectroscopic binary with 5  M B6 companion
BP Cir Circinus  7m.317m.7102.39810F2/3II-F6spectroscopic binary with 4.7  M B6 companion
BG Cru Crux  5m.345m.5803.3428F5Ib-G0p 
R Cru Crux  6m.407m.2305.82575F7Ib/II 
S Cru Crux  6m.226m.9204.68997F6-G1Ib-II 
T Cru Crux  6m.326m.8306.73331F6-G2Ib 
X Cyg Cygnus  5m.856m.9116.38633G8Ib [46]  
SU Cyg Cygnus  6m.447m.2203.84555F2-G0I-II [47]  
β Dor Dorado  3m.464m.0809.8426F4-G4Ia-II 
ζ Gem Gemini Julius Schmidt, 18253m.624m.1810.15073F7Ib to G3Ib 
V473 Lyr Lyra  5m.996m.3501.49078F6Ib-II 
R Mus Musca  5m.936m.7307.51F7Ib-G2 
S Mus Musca  5m.896m.4909.66007F6Ib-G0 
S Nor Norma  6m.126m.7709.75411F8-G0Ibbrightest member of open cluster NGC 6087
QZ Nor Norma  8m.719m.0303.786008F6Imember of open cluster NGC 6067
V340 Nor Norma  8m.268m.6011.2888G0Ibmember of open cluster NGC 6067
V378 Nor Norma  6m.216m.2303.5850G8Ib 
BF Oph Ophiuchus  6m.937m.7104.06775F8-K2 [48]  
RS Pup Puppis  6m.527m.6741.3876F8Iab 
S Sge Sagitta John Ellard Gore, 18855m.246m.0408.382086 [49] F6Ib-G5Ib 
U Sgr Sagittarius (in M25) 6m.287m.1506.74523G1Ib [50]  
W Sgr Sagittarius  4m.295m.1407.59503F4-G2IbOptical double with γ2 Sgr
X Sgr Sagittarius  4m.204m.9007.01283F5-G2II
V636 Sco Scorpius  6m.406m.9206.79671F7/8Ib/II-G5 
R TrA Triangulum Australe  6m.46m.903.389F7Ib/II [50]  
S TrA Triangulum Australe  6m.16m.806.323F6II-G2 
α UMi (Polaris) Ursa Minor Ejnar Hertzsprung, 19111m.862m.1303.9696F8Ib or F8II 
AH Vel Vela  5m.55m.8904.227171F7Ib-II 
S Vul Vulpecula  8m.699m.4268.464G0-K2(M1) 
T Vul Vulpecula  5m.416m.0904.435462F5Ib-G0Ib 
U Vul Vulpecula  6m.737m.5407.990676F6Iab-G2 
SV Vul Vulpecula  6m.727m.7944.993F7Iab-K0Iab 
SU Cas Cassiopeia  5m.886m.3001.9F5II 

See also

Related Research Articles

<span class="mw-page-title-main">Variable star</span> Star whose brightness fluctuates, as seen from Earth

A variable star is a star whose brightness as seen from Earth changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

<span class="mw-page-title-main">Cepheid variable</span> Type of variable star that pulsates radially

A Cepheid variable is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period and amplitude.

<span class="mw-page-title-main">RR Lyrae variable</span> Type of variable star

RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype and brightest example, RR Lyrae.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

<span class="mw-page-title-main">Delta Cephei</span> Binary star system in the constellation Cepheus

Delta Cephei is a quadruple star system located approximately 887 light-years away in the northern constellation of Cepheus, the King. At this distance, the visual magnitude of the star is diminished by 0.23 as a result of extinction caused by gas and dust along the line of sight. It is the prototype of the Cepheid variable stars that undergo periodic changes in luminosity.

<span class="mw-page-title-main">W Sagittarii</span> Star in the constellation Sagittarius

W Sagittarii is a multiple star system star in the constellation Sagittarius, and a Cepheid variable star.

<span class="mw-page-title-main">Delta Scuti variable</span> Subclass of young pulsating star

A Delta Scuti variable is a subclass of young pulsating star. These variables as well as classical cepheids are important standard candles and have been used to establish the distance to the Large Magellanic Cloud, globular clusters, open clusters, and the Galactic Center. The variables follow a period-luminosity relation in certain passbands like other standard candles such as Cepheids. SX Phoenicis variables are generally considered to be a subclass of Delta Scuti variables that contain old stars, and can be found in globular clusters. SX Phe variables also follow a period-luminosity relation. One last sub-class are the pre-main sequence (PMS) Delta Scuti variables.

<span class="mw-page-title-main">HD 95109</span> Star in the constellation Carina

HD 95109 is a Classical Cepheid variable, a type of variable star, in the constellation Carina. Its apparent magnitude is 6.86.

<span class="mw-page-title-main">RS Puppis</span> Variable star in the constellation Puppis

RS Puppis is a Cepheid variable star around 6,000 ly away in the constellation of Puppis. It is one of the biggest and brightest known Cepheids in the Milky Way galaxy and has one of the longest periods for this class of star at 41.5 days.

<span class="mw-page-title-main">Yellow supergiant</span> Star that has a supergiant luminosity class, with a spectral type of F or G

A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.

<span class="mw-page-title-main">Stellar pulsation</span>

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

<span class="mw-page-title-main">Type II Cepheid</span>

Type II Cepheids are variable stars which pulsate with periods typically between 1 and 50 days. They are population II stars: old, typically metal-poor, low mass objects.

<span class="mw-page-title-main">Kappa Pavonis</span> Variable star in the constellation Pavo

Kappa Pavonis is a variable star in the constellation Pavo. It is the brightest W Virginis variable in the sky.

<span class="mw-page-title-main">S Vulpeculae</span> Variable star in the constellation Vulpecula

S Vulpeculae is a variable star located in the constellation Vulpecula. A supergiant star, it is around 382 times the diameter of the Sun.

<span class="mw-page-title-main">R Sagittae</span> Star in the constellation Sagitta

R Sagittae is an RV Tauri variable star in the constellation Sagitta that varies from magnitude 8.0 to 10.5 in 70.77 days. It is a post-AGB low mass yellow supergiant that varies between spectral types G0Ib and G8Ib as it pulsates. Its variable star designation of "R" indicates that it was the first star discovered to be variable in the constellation. It was discovered in 1859 by Joseph Baxendell, though classified as a semi regular variable until RV Tauri variables were identified as a distinct class in 1905.

<span class="mw-page-title-main">V473 Lyrae</span> Star in the constellation Lyra

V473 Lyrae is a variable star in the constellation Lyra. It is an unusual Classical Cepheid variable with a visual range of 5.99 to 6.35.

<span class="mw-page-title-main">OGLE-LMC-CEP0227</span> Variable star in the Large Magellanic Cloud

OGLE-LMC-CEP0227 is an eclipsing binary and Cepheid variable star, pulsating every 3.8 days. The star, in the Large Magellanic Cloud, was the first Cepheid star system found to be orbiting exactly edge on.

<span class="mw-page-title-main">Period-luminosity relation</span> Astronomical principle

In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period. The best-known relation is the direct proportionality law holding for Classical Cepheid variables, sometimes called the Leavitt Law. Discovered in 1908 by Henrietta Swan Leavitt, the relation established Cepheids as foundational indicators of cosmic benchmarks for scaling galactic and extragalactic distances. The physical model explaining the Leavitt's law for classical cepheids is called kappa mechanism.

<span class="mw-page-title-main">SZ Tauri</span> Variable star in Taurus

SZ Tauri is a variable star in the equatorial constellation of Taurus. The brightness of this star varies from an apparent visual magnitude of 6.39 down to 6.69 with a period of 3.149 days, which is near the lower limit of visibility to the naked eye. The distance to this star is approximately 2,070 light years based on parallax measurements. There is some indication this may be a binary system, but the evidence is inconclusive.

<span class="mw-page-title-main">EU Tauri</span> Variable star in the constellation Taurus

EU Tauri is a variable star in the equatorial constellation of Taurus. With a brightness that cycles around an apparent visual magnitude of 8.07, it is too faint to be visible to the naked eye. The distance to this star is approximately 3,900 light years based on parallax measurements, but it is drifting closer with a radial velocity of −2.5 km/s. The position of this star near the ecliptic means it is subject to lunar occultations.

References

  1. Udalski, A.; Soszynski, I.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K. (1999). "The Optical Gravitational Lensing Experiment. Cepheids in the Magellanic Clouds. IV. Catalog of Cepheids from the Large Magellanic Cloud". Acta Astronomica. 49: 223–317. arXiv: astro-ph/9908317 . Bibcode:1999AcA....49..223U.
  2. 1 2 3 Soszynski, I.; Poleski, R.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Szewczyk, O.; Ulaczyk, K. (2008). "The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud". Acta Astronomica. 58: 163. arXiv: 0808.2210 . Bibcode:2008AcA....58..163S.
  3. 1 2 3 Freedman, Wendy L.; Madore, Barry F.; Gibson, Brad K.; Ferrarese, Laura; Kelson, Daniel D.; Sakai, Shoko; Mould, Jeremy R.; Kennicutt, Robert C.; Ford, Holland C.; Graham, John A.; Huchra, John P.; Hughes, Shaun M. G.; Illingworth, Garth D.; Macri, Lucas M.; Stetson, Peter B. (2001). "Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant". The Astrophysical Journal. 553 (1): 47–72. arXiv: astro-ph/0012376 . Bibcode:2001ApJ...553...47F. doi:10.1086/320638. S2CID   119097691.
  4. 1 2 3 4 Tammann, G. A.; Sandage, A.; Reindl, B. (2008). "The expansion field: The value of H 0". The Astronomy and Astrophysics Review. 15 (4): 289. arXiv: 0806.3018 . Bibcode:2008A&ARv..15..289T. doi:10.1007/s00159-008-0012-y. S2CID   18463474.
  5. 1 2 Majaess, D. J.; Turner, D. G.; Lane, D. J. (2009). "Characteristics of the Galaxy according to Cepheids". Monthly Notices of the Royal Astronomical Society. 398 (1): 263–270. arXiv: 0903.4206 . Bibcode:2009MNRAS.398..263M. doi: 10.1111/j.1365-2966.2009.15096.x . S2CID   14316644.
  6. 1 2 3 4 5 Freedman, Wendy L.; Madore, Barry F. (2010). "The Hubble Constant". Annual Review of Astronomy and Astrophysics. 48: 673–710. arXiv: 1004.1856 . Bibcode:2010ARA&A..48..673F. doi:10.1146/annurev-astro-082708-101829. S2CID   13909389.
  7. 1 2 3 Ngeow, C.; Kanbur, S. M. (2006). "The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period-Luminosity Relations". The Astrophysical Journal. 642 (1): L29–L32. arXiv: astro-ph/0603643 . Bibcode:2006ApJ...642L..29N. doi:10.1086/504478. S2CID   17860528.
  8. 1 2 3 Macri, Lucas M.; Riess, Adam G.; Guzik, Joyce Ann; Bradley, Paul A. (2009). The SH0ES Project: Observations of Cepheids in NGC 4258 and Type Ia SN Hosts. Stellar Pulsation: Challenges for Theory and Observation: Proceedings of the International Conference. AIP Conference Proceedings. Vol. 1170. pp. 23–25. Bibcode:2009AIPC.1170...23M. doi:10.1063/1.3246452.
  9. Szabados, L. (2003). "Cepheids: Observational properties, binarity and GAIA". GAIA Spectroscopy: Science and Technology. 298: 237. Bibcode:2003ASPC..298..237S.
  10. Newman, J. A.; Zepf, S. E.; Davis, M.; Freedman, W. L.; Madore, B. F.; Stetson, P. B.; Silbermann, N.; Phelps, R. (1999). "A Cepheid Distance to NGC 4603 in Centaurus". The Astrophysical Journal. 523 (2): 506. arXiv: astro-ph/9904368 . Bibcode:1999ApJ...523..506N. doi:10.1086/307764. S2CID   15343736.
  11. Turner, David G. (1996). "The Progenitors of Classical Cepheid Variables". Journal of the Royal Astronomical Society of Canada. 90: 82. Bibcode:1996JRASC..90...82T.
  12. 1 2 3 Turner, D. G. (2010). "The PL calibration for Milky Way Cepheids and its implications for the distance scale". Astrophysics and Space Science. 326 (2): 219–231. arXiv: 0912.4864 . Bibcode:2010Ap&SS.326..219T. doi:10.1007/s10509-009-0258-5. S2CID   119264970.
  13. Rodgers, A. W. (1957). "Radius variation and population type of cepheid variables". Monthly Notices of the Royal Astronomical Society. 117: 85–94. Bibcode:1957MNRAS.117...85R. doi: 10.1093/mnras/117.1.85 .
  14. Bono, G.; Gieren, W. P.; Marconi, M.; Fouqué, P. (2001). "On the Pulsation Mode Identification of Short-Period Galactic Cepheids". The Astrophysical Journal. 552 (2): L141. arXiv: astro-ph/0103497 . Bibcode:2001ApJ...552L.141B. doi:10.1086/320344. S2CID   16131313.
  15. Turner, D. G.; Berdnikov, L. N. (2004). "On the crossing mode of the long-period Cepheid SV Vulpeculae". Astronomy and Astrophysics. 423: 335–340. Bibcode:2004A&A...423..335T. doi: 10.1051/0004-6361:20040163 .
  16. Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Neilson, Hilding R.; Remage Evans, Nancy (2014). "The Secret Lives of Cepheids: Evolutionary Changes and Pulsation-induced Shock Heating in the Prototype Classical Cepheid δ Cep". The Astrophysical Journal . 794 (1): 80. arXiv: 1409.8628 . Bibcode:2014ApJ...794...80E. doi:10.1088/0004-637X/794/1/80. S2CID   119189134.
  17. Kovtyukh, V. V.; et al. (January 2005), "Phase-dependent Variation of the Fundamental Parameters of Cepheids. II. Periods Longer than 10 Days", The Astronomical Journal, 129 (1): 433–453, Bibcode:2005AJ....129..433K, doi: 10.1086/426339 , S2CID   120666782.
  18. Soszyñski, I.; Poleski, R.; Udalski, A.; Szymañski, M. K.; Kubiak, M.; Pietrzyñski, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K. (2010). "The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. VII. Classical Cepheids in the Small Magellanic Cloud". Acta Astronomica. 60 (1): 17. arXiv: 1003.4518 . Bibcode:2010AcA....60...17S.
  19. Hoskin, M. (1979). "Goodricke, Pigott and the Quest for Variable Stars". Journal for the History of Astronomy. 10: 23–41. Bibcode:1979JHA....10...23H. doi:10.1177/002182867901000103. S2CID   118155505.
  20. De Zeeuw, P. T.; Hoogerwerf, R.; De Bruijne, J. H. J.; Brown, A. G. A.; Blaauw, A. (1999). "A HIPPARCOS Census of the Nearby OB Associations". The Astronomical Journal. 117 (1): 354–399. arXiv: astro-ph/9809227 . Bibcode:1999AJ....117..354D. doi:10.1086/300682. S2CID   16098861.
  21. Majaess, D.; Turner, D.; Gieren, W. (2012). "New Evidence Supporting Cluster Membership for the Keystone Calibrator Delta Cephei". The Astrophysical Journal. 747 (2): 145. arXiv: 1201.0993 . Bibcode:2012ApJ...747..145M. doi:10.1088/0004-637X/747/2/145. S2CID   118672744.
  22. Benedict, G. Fritz; McArthur, B. E.; Fredrick, L. W.; Harrison, T. E.; Slesnick, C. L.; Rhee, J.; Patterson, R. J.; Skrutskie, M. F.; Franz, O. G.; Wasserman, L. H.; Jefferys, W. H.; Nelan, E.; Van Altena, W.; Shelus, P. J.; Hemenway, P. D.; Duncombe, R. L.; Story, D.; Whipple, A. L.; Bradley, A. J. (2002). "Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator δ Cephei". The Astronomical Journal. 124 (3): 1695. arXiv: astro-ph/0206214 . Bibcode:2002AJ....124.1695B. doi:10.1086/342014. S2CID   42655824.
  23. Leavitt, Henrietta S. (1908). "1777 variables in the Magellanic Clouds". Annals of Harvard College Observatory. 60: 87. Bibcode:1907AnHar..60...87L.
  24. Leavitt, Henrietta S.; Pickering, Edward C. (1912). "Periods of 25 Variable Stars in the Small Magellanic Cloud". Harvard College Observatory Circular. 173: 1. Bibcode:1912HarCi.173....1L.
  25. Hertzsprung, Ejnar (1913). "Über die räumliche Verteilung der Veränderlichen vom δ Cephei-Typus". Astronomische Nachrichten. 196: 201. Bibcode:1913AN....196..201H.
  26. 1 2 3 Benedict, G. Fritz; McArthur, Barbara E.; Feast, Michael W.; Barnes, Thomas G.; Harrison, Thomas E.; Patterson, Richard J.; Menzies, John W.; Bean, Jacob L.; Freedman, Wendy L. (2007). "Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations". The Astronomical Journal. 133 (4): 1810. arXiv: astro-ph/0612465 . Bibcode:2007AJ....133.1810B. doi:10.1086/511980. S2CID   16384267.
  27. Kervella, P.; Mérand, A.; Szabados, L.; Fouqué, P.; Bersier, D.; Pompei, E.; Perrin, G. (2008). "The long-period Galactic Cepheid RS Puppis". Astronomy and Astrophysics. 480 (1): 167–178. arXiv: 0802.1501 . Bibcode:2008A&A...480..167K. doi:10.1051/0004-6361:20078961. S2CID   14865683.
  28. Bond, H. E.; Sparks, W. B. (2009). "On geometric distance determination to the Cepheid RS Puppis from its light echoes". Astronomy and Astrophysics. 495 (2): 371. arXiv: 0811.2943 . Bibcode:2009A&A...495..371B. doi:10.1051/0004-6361:200810280.
  29. Majaess, Daniel; Turner, David; Moni Bidin, Christian; Mauro, Francesco; Geisler, Douglas; Gieren, Wolfgang; Minniti, Dante; Chené, André-Nicolas; Lucas, Philip; Borissova, Jura; Kurtev, Radostn; Dékány, Istvan; Saito, Roberto K. (2011). "New Evidence Supporting Membership for TW Nor in Lyngå 6 and the Centaurus Spiral Arm". The Astrophysical Journal Letters. 741 (2): L27. arXiv: 1110.0830 . Bibcode:2011ApJ...741L..27M. doi:10.1088/2041-8205/741/2/L27. S2CID   12220317.
  30. Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-Line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  31. Turner, D. G.; Kovtyukh, V. V.; Luck, R. E.; Berdnikov, L. N. (2013). "The Pulsation Mode and Distance of the Cepheid FF Aquilae". The Astrophysical Journal Letters. 772 (1): L10. arXiv: 1306.1228 . Bibcode:2013ApJ...772L..10T. doi:10.1088/2041-8205/772/1/L10. S2CID   54710833.
  32. Antonello, E.; Poretti, E.; Reduzzi, L. (1990). "The separation of S-Cepheids from classical Cepheids and a new definition of the class". Astronomy and Astrophysics. 236: 138. Bibcode:1990A&A...236..138A.
  33. Usenko, I. A.; Kniazev, A. Yu.; Berdnikov, L. N.; Kravtsov, V. V. (2014). "Spectroscopic studies of Cepheids in Circinus (AV Cir, BP Cir) and Triangulum Australe (R TrA, S TrA, U TrA, LR TrA)". Astronomy Letters. 40 (12): 800. Bibcode:2014AstL...40..800U. doi:10.1134/S1063773714110061. S2CID   122745580.
  34. Evans, N. R.; Szabó, R.; Derekas, A.; Szabados, L.; Cameron, C.; Matthews, J. M.; Sasselov, D.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Weiss, W. W. (2015). "Observations of Cepheids with the MOST satellite: Contrast between pulsation modes". Monthly Notices of the Royal Astronomical Society. 446 (4): 4008. arXiv: 1411.1730 . Bibcode:2015MNRAS.446.4008E. doi: 10.1093/mnras/stu2371 .
  35. Feast, M. W.; Catchpole, R. M. (1997). "The Cepheid period-luminosity zero-point from HIPPARCOS trigonometrical parallaxes". Monthly Notices of the Royal Astronomical Society. 286 (1): L1–L5. Bibcode:1997MNRAS.286L...1F. doi: 10.1093/mnras/286.1.l1 .
  36. Stanek, K. Z.; Udalski, A. (1999). "The Optical Gravitational Lensing Experiment. Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud". arXiv: astro-ph/9909346 .
  37. Udalski, A.; Wyrzykowski, L.; Pietrzynski, G.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Zebrun, K. (2001). "The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period-Luminosity Relation on Metallicity". Acta Astronomica. 51: 221. arXiv: astro-ph/0109446 . Bibcode:2001AcA....51..221U.
  38. Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). "A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant". The Astrophysical Journal. 652 (2): 1133–1149. arXiv: astro-ph/0608211 . Bibcode:2006ApJ...652.1133M. doi:10.1086/508530. S2CID   15728812.
  39. Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I. (2008). "Cepheids in External Galaxies. I. The Maser-Host Galaxy NGC 4258 and the Metallicity Dependence of Period-Luminosity and Period-Wesenheit Relations". The Astrophysical Journal. 684 (1): 102–117. arXiv: 0805.1592 . Bibcode:2008ApJ...684..102B. doi:10.1086/589965. S2CID   6275274.
  40. Majaess, D.; Turner, D.; Lane, D. (2009). "Type II Cepheids as Extragalactic Distance Candles". Acta Astronomica. 59 (4): 403. arXiv: 0909.0181 . Bibcode:2009AcA....59..403M.
  41. Madore, Barry F.; Freedman, Wendy L. (2009). "Concerning the Slope of the Cepheid Period-Luminosity Relation". The Astrophysical Journal. 696 (2): 1498–1501. arXiv: 0902.3747 . Bibcode:2009ApJ...696.1498M. doi:10.1088/0004-637X/696/2/1498. S2CID   16325249.
  42. Scowcroft, V.; Bersier, D.; Mould, J. R.; Wood, P. R. (2009). "The effect of metallicity on Cepheid magnitudes and the distance to M33". Monthly Notices of the Royal Astronomical Society. 396 (3): 43–47. arXiv: 0903.4088 . Bibcode:2009MNRAS.396.1287S. doi: 10.1111/j.1365-2966.2009.14822.x .
  43. Majaess, D. (2010). "The Cepheids of Centaurus A (NGC 5128) and Implications for H0". Acta Astronomica. 60 (2): 121. arXiv: 1006.2458 . Bibcode:2010AcA....60..121M.
  44. 1 2 3 Berdnikov, L. N. (2008). "VizieR Online Data Catalog: Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008)". VizieR On-Line Data Catalog: II/285. Originally Published in: 2008yCat.2285....0B. 2285: 0. Bibcode:2008yCat.2285....0B.
  45. Turner, D. G.; Berdnikov, L. N. (2003). "The nature of the Cepheid T Antliae". Astronomy and Astrophysics. 407: 325–334. Bibcode:2003A&A...407..325T. doi: 10.1051/0004-6361:20030835 .
  46. Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaž (2010). "A High-resolution, Multi-epoch Spectral Atlas of Peculiar Stars Including RAVE, GAIA, and HERMES Wavelength Ranges". The Astronomical Journal. 140 (6): 1758. arXiv: 1009.5566 . Bibcode:2010AJ....140.1758T. doi:10.1088/0004-6256/140/6/1758. S2CID   119188449.
  47. Andrievsky, S. M.; Luck, R. E.; Kovtyukh, V. V. (2005). "Phase-dependent Variation of the Fundamental Parameters of Cepheids. III. Periods between 3 and 6 Days". The Astronomical Journal. 130 (4): 1880. Bibcode:2005AJ....130.1880A. doi: 10.1086/444541 .
  48. Kreiken, E. A. (1953). "The Density of Stars of Different Spectral Types. With 1 figure". Zeitschrift für Astrophysik. 32: 125. Bibcode:1953ZA.....32..125K.
  49. Watson, Christopher (4 January 2010). "S Sagittae". AAVSO Website. American Association of Variable Star Observers. Retrieved 22 May 2015.
  50. 1 2 Houk, N.; Cowley, A. P. (1975). University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. Declinations −90° to −53.0°. Bibcode:1975mcts.book.....H.