Last updated
PSR B1509-58 - X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max. PIA18848-PSRB1509-58-ChandraXRay-WiseIR-20141023.jpg
PSR B1509-58X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max.

A pulsar (from pulse and -ar as in quasar) [1] is a highly magnetized rotating neutron star that emits a beam of electromagnetic radiation. This radiation can be observed only when the beam of emission is pointing toward Earth (much like the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense, and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are believed to be one of the candidates for the source of ultra-high-energy cosmic rays (see also centrifugal mechanism of acceleration).

Quasar active galactic nuclei containing a massive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It has been theorized that most large galaxies contain a supermassive central black hole with mass ranging from millions to billions of times the mass of the Sun. In quasars and other types of AGN, the black hole is surrounded by a gaseous accretion disk. As gas falls toward the black hole, energy is released in the form of electromagnetic radiation, which can be observed across the electromagnetic spectrum. The power radiated by quasars is enormous: the most powerful quasars have luminosities thousands of times greater than a galaxy such as the Milky Way.

Neutron star degenerate stellar remnant

A neutron star is the collapsed core of a giant star which before collapse had a total of between 10 and 29 solar masses. Neutron stars are the smallest and densest stars, not counting hypothetical quark stars and strange stars. Neutron stars have a radius of the order of 10 kilometres (6.2 mi) and a mass lower than a 2.16 solar masses. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

Electromagnetic radiation form of energy emitted and absorbed by charged particles, which exhibits wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.


The periods of pulsars make them very useful tools. Observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered around a pulsar, PSR B1257+12. Certain types of pulsars rival atomic clocks in their accuracy in keeping time. [2]

Gravitational wave ripples in the curvature of spacetime that propagate as waves at the speed of light, generated in certain gravitational interactions that propagate outward from their source

Gravitational waves are disturbances in the curvature (fabric) of spacetime, generated by accelerated masses, that propagate as waves outward from their source at the speed of light. They were proposed by Henri Poincaré in 1905 and subsequently predicted in 1916 by Albert Einstein on the basis of his general theory of relativity. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously – showing one of the ways the methods of classical physics are unable to explain phenomena associated with relativity.

Exoplanet Any planet beyond the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first evidence of an exoplanet was noted in 1917, but was not recognized as such. The first scientific detection of an exoplanet was in 1988; it was confirmed to be an exoplanet in 2012. The first confirmed detection occurred in 1992. As of 1 April 2019, there are 4,023 confirmed planets in 3,005 systems, with 656 systems having more than one planet.

PSR B1257+12, previously designated PSR 1257+12, alternatively designated PSR J1300+1240, also named Lich, is a pulsar located 2,300 light-years from the Sun in the constellation of Virgo.

History of observation


Chart on which Jocelyn Bell Burnell first recognised evidence of a pulsar, exhibited at Cambridge university Library Chart Showing Radio Signal of First Identified Pulsar.jpg
Chart on which Jocelyn Bell Burnell first recognised evidence of a pulsar, exhibited at Cambridge university Library
Composite optical/X-ray image of the Crab Nebula, showing synchrotron emission in the surrounding pulsar wind nebula, powered by injection of magnetic fields and particles from the central pulsar. Chandra-crab.jpg
Composite optical/X-ray image of the Crab Nebula, showing synchrotron emission in the surrounding pulsar wind nebula, powered by injection of magnetic fields and particles from the central pulsar.

The first pulsar was observed on November 28, 1967, by Jocelyn Bell Burnell and Antony Hewish. [3] [4] [5] They observed pulses separated by 1.33 seconds that originated from the same location in the sky, and kept to sidereal time. In looking for explanations for the pulses, the short period of the pulses eliminated most astrophysical sources of radiation, such as stars, and since the pulses followed sidereal time, it could not be man-made radio frequency interference.

PSR B1919+21 pulsar

PSR B1919+21 is a pulsar with a period of 1.3373 seconds and a pulse width of 0.04 seconds. Discovered by Jocelyn Bell Burnell and Antony Hewish on November 28, 1967, it is the first discovered radio pulsar. The power and regularity of the signals were briefly thought to resemble an extraterrestrial beacon, leading the source to be nicknamed LGM-1.

Jocelyn Bell Burnell British astronomer

Dame Susan Jocelyn Bell Burnell is an astrophysicist from Northern Ireland who, as a postgraduate student, co-discovered the first radio pulsars in 1967. She was credited with "one of the most significant scientific achievements of the 20th century". The discovery was recognised by the award of the 1974 Nobel Prize in Physics, but despite the fact that she was the first to observe the pulsars, Bell was not one of the recipients of the prize.

Antony Hewish is a British radio astronomer who won the Nobel Prize for Physics in 1974 for his role in the discovery of pulsars. He was also awarded the Eddington Medal of the Royal Astronomical Society in 1969.

When observations with another telescope confirmed the emission, it eliminated any sort of instrumental effects. At this point, Bell Burnell said of herself and Hewish that "we did not really believe that we had picked up signals from another civilization, but obviously the idea had crossed our minds and we had no proof that it was an entirely natural radio emission. It is an interesting problem—if one thinks one may have detected life elsewhere in the universe, how does one announce the results responsibly?" [6] Even so, they nicknamed the signal LGM-1, for "little green men" (a playful name for intelligent beings of extraterrestrial origin).

Little green men is the stereotypical portrayal of extraterrestrials as little humanoid-like creatures with green skin and sometimes with antennae on their heads. The term is also sometimes used to describe gremlins, mythical creatures known for causing problems in airplanes and mechanical devices. Today, these creatures are more commonly associated with an alleged alien species called greys, whose skin color is described as not green, but grey.

Extraterrestrial life Lifeform that does not originate from Earth

Extraterrestrial life, also called alien life, is life that occurs outside of Earth and that did not originate from Earth. These hypothetical life forms may range from simple prokaryotes to beings with civilizations far more advanced than humanity. The Drake equation speculates about the existence of intelligent life elsewhere in the universe. The science of extraterrestrial life in all its forms is known as exobiology.

It was not until a second pulsating source was discovered in a different part of the sky that the "LGM hypothesis" was entirely abandoned. [7] Their pulsar was later dubbed CP 1919, and is now known by a number of designators including PSR 1919+21 and PSR J1921+2153. Although CP 1919 emits in radio wavelengths, pulsars have subsequently been found to emit in visible light, X-ray, and gamma ray wavelengths. [8]

X-ray form of electromagnetic radiation

X-rays make up X-radiation, a form of electromagnetic radiation. Most X-rays have a wavelength ranging from 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to with terms meaning Röntgen radiation, after the German scientist Wilhelm Röntgen who discovered these on November 8, 1895, who usually is credited as its discoverer, and who named it X-radiation to signify an unknown type of radiation. Spelling of X-ray(s) in the English language includes the variants x-ray(s), xray(s), and X ray(s).

Gamma ray electromagnetic radiation of high frequency and therefore high energy

A gamma ray or gamma radiation, is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; he had previously discovered two less penetrating types of decay radiation, which he named alpha rays and beta rays in ascending order of penetrating power.

The word "pulsar" is a portmanteau of 'pulsating' and 'quasar', and first appeared in print in 1968:

The existence of neutron stars was first proposed by Walter Baade and Fritz Zwicky in 1934, when they argued that a small, dense star consisting primarily of neutrons would result from a supernova. [10] Based on the idea of magnetic flux conservation from magnetic main sequence stars, Lodewijk Woltjer proposed in 1964 that such neutron stars might contain magnetic fields as large as 10^14 to 10^16 G. [11] In 1967, shortly before the discovery of pulsars, Franco Pacini suggested that a rotating neutron star with a magnetic field would emit radiation, and even noted that such energy could be pumped into a supernova remnant around a neutron star, such as the Crab Nebula. [12] After the discovery of the first pulsar, Thomas Gold independently suggested a rotating neutron star model similar to that of Pacini, and explicitly argued that this model could explain the pulsed radiation observed by Bell Burnell and Hewish. [13] The discovery of the Crab pulsar later in 1968 seemed to provide confirmation of the rotating neutron star model of pulsars. The Crab pulsar has a 33-millisecond pulse period, which was too short to be consistent with other proposed models for pulsar emission. Moreover, the Crab pulsar is so named because it is located at the center of the Crab Nebula, consistent with the 1933 prediction of Baade and Zwicky. [14]

In 1974, Antony Hewish and Martin Ryle became the first astronomers to be awarded the Nobel Prize in Physics, with the Royal Swedish Academy of Sciences noting that Hewish played a "decisive role in the discovery of pulsars". [15] Considerable controversy is associated with the fact that Hewish was awarded the prize while Bell, who made the initial discovery while she was his PhD student, was not. Bell claims no bitterness upon this point, supporting the decision of the Nobel prize committee. [16]


The Vela Pulsar and its surrounding pulsar wind nebula. Vela Pulsar jet.jpg
The Vela Pulsar and its surrounding pulsar wind nebula.

In 1974, Joseph Hooton Taylor, Jr. and Russell Hulse discovered for the first time a pulsar in a binary system, PSR B1913+16. This pulsar orbits another neutron star with an orbital period of just eight hours. Einstein's theory of general relativity predicts that this system should emit strong gravitational radiation, causing the orbit to continually contract as it loses orbital energy. Observations of the pulsar soon confirmed this prediction, providing the first ever evidence of the existence of gravitational waves. As of 2010, observations of this pulsar continue to agree with general relativity. [17] In 1993, the Nobel Prize in Physics was awarded to Taylor and Hulse for the discovery of this pulsar. [18]

In 1982, Don Backer led a group which discovered PSR B1937+21, a pulsar with a rotation period of just 1.6 milliseconds (38,500 rpm). [19] Observations soon revealed that its magnetic field was much weaker than ordinary pulsars, while further discoveries cemented the idea that a new class of object, the "millisecond pulsars" (MSPs) had been found. MSPs are believed to be the end product of X-ray binaries. Owing to their extraordinarily rapid and stable rotation, MSPs can be used by astronomers as clocks rivaling the stability of the best atomic clocks on Earth. Factors affecting the arrival time of pulses at Earth by more than a few hundred nanoseconds can be easily detected and used to make precise measurements. Physical parameters accessible through pulsar timing include the 3D position of the pulsar, its proper motion, the electron content of the interstellar medium along the propagation path, the orbital parameters of any binary companion, the pulsar rotation period and its evolution with time. (These are computed from the raw timing data by Tempo, a computer program specialized for this task.) After these factors have been taken into account, deviations between the observed arrival times and predictions made using these parameters can be found and attributed to one of three possibilities: intrinsic variations in the spin period of the pulsar, errors in the realization of Terrestrial Time against which arrival times were measured, or the presence of background gravitational waves. Scientists are currently attempting to resolve these possibilities by comparing the deviations seen between several different pulsars, forming what is known as a pulsar timing array. The goal of these efforts is to develop a pulsar-based time standard precise enough to make the first ever direct detection of gravitational waves. In June 2006, the astronomer John Middleditch and his team at LANL announced the first prediction of pulsar glitches with observational data from the Rossi X-ray Timing Explorer. They used observations of the pulsar PSR J0537-6910.

In 1992, Aleksander Wolszczan discovered the first extrasolar planets around PSR B1257+12. This discovery presented important evidence concerning the widespread existence of planets outside the Solar System, although it is very unlikely that any life form could survive in the environment of intense radiation near a pulsar.

In 2016, AR Scorpii was identified as the first pulsar in which the compact object is a white dwarf instead of a neutron star. [20] Because its moment of inertia is much higher than that of a neutron star, the white dwarf in this system rotates once every 1.97 minutes, far slower than neutron-star pulsars. [21] The system displays strong pulsations from ultraviolet to radio wavelengths, powered by the spin-down of the strongly magnetized white dwarf. [20]


Initially pulsars were named with letters of the discovering observatory followed by their right ascension (e.g. CP 1919). As more pulsars were discovered, the letter code became unwieldy, and so the convention then arose of using the letters PSR (Pulsating Source of Radio) followed by the pulsar's right ascension and degrees of declination (e.g. PSR 0531+21) and sometimes declination to a tenth of a degree (e.g. PSR 1913+16.7). Pulsars appearing very close together sometimes have letters appended (e.g. PSR 0021-72C and PSR 0021-72D).

The modern convention prefixes the older numbers with a B (e.g. PSR B1919+21), with the B meaning the coordinates are for the 1950.0 epoch. All new pulsars have a J indicating 2000.0 coordinates and also have declination including minutes (e.g. PSR J1921+2153). Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437-4715). All pulsars have a J name that provides more precise coordinates of its location in the sky. [22]

Formation, mechanism, turn off

Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines, the protruding cones represent the emission beams and the green line represents the axis on which the star rotates. Pulsar schematic.svg
Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines, the protruding cones represent the emission beams and the green line represents the axis on which the star rotates.

The events leading to the formation of a pulsar begin when the core of a massive star is compressed during a supernova, which collapses into a neutron star. The neutron star retains most of its angular momentum, and since it has only a tiny fraction of its progenitor's radius (and therefore its moment of inertia is sharply reduced), it is formed with very high rotation speed. A beam of radiation is emitted along the magnetic axis of the pulsar, which spins along with the rotation of the neutron star. The magnetic axis of the pulsar determines the direction of the electromagnetic beam, with the magnetic axis not necessarily being the same as its rotational axis. This misalignment causes the beam to be seen once for every rotation of the neutron star, which leads to the "pulsed" nature of its appearance.

In rotation-powered pulsars, the beam originates from the rotational energy of the neutron star, which generates an electrical field from the movement of the very strong magnetic field, resulting in the acceleration of protons and electrons on the star surface and the creation of an electromagnetic beam emanating from the poles of the magnetic field. [23] [24] This rotation slows down over time as electromagnetic power is emitted. When a pulsar's spin period slows down sufficiently, the radio pulsar mechanism is believed to turn off (the so-called "death line"). This turn-off seems to take place after about 10–100 million years, which means of all the neutron stars born in the 13.6 billion year age of the universe, around 99% no longer pulsate. [25]

Though the general picture of pulsars as rapidly rotating neutron stars is widely accepted, Werner Becker of the Max Planck Institute for Extraterrestrial Physics said in 2006, "The theory of how pulsars emit their radiation is still in its infancy, even after nearly forty years of work." [26]


Three distinct classes of pulsars are currently known to astronomers, according to the source of the power of the electromagnetic radiation:

Although all three classes of objects are neutron stars, their observable behavior and the underlying physics are quite different. There are, however, connections. For example, X-ray pulsars are probably old rotationally-powered pulsars that have already lost most of their power, and have only become visible again after their binary companions had expanded and began transferring matter on to the neutron star. The process of accretion can in turn transfer enough angular momentum to the neutron star to "recycle" it as a rotation-powered millisecond pulsar. As this matter lands on the neutron star, it is thought to "bury" the magnetic field of the neutron star (although the details are unclear), leaving millisecond pulsars with magnetic fields 1000-10,000 times weaker than average pulsars. This low magnetic field is less effective at slowing the pulsar's rotation, so millisecond pulsars live for billions of years, making them the oldest known pulsars. Millisecond pulsars are seen in globular clusters, which stopped forming neutron stars billions of years ago. [25]

Of interest to the study of the state of the matter in a neutron star are the glitches observed in the rotation velocity of the neutron star. This velocity is decreasing slowly but steadily, except by sudden variations. One model put forward to explain these glitches is that they are the result of "starquakes" that adjust the crust of the neutron star. Models where the glitch is due to a decoupling of the possibly superconducting interior of the star have also been advanced. In both cases, the star's moment of inertia changes, but its angular momentum does not, resulting in a change in rotation rate.

Disrupted recycled pulsar

When two massive stars are born close together from the same cloud of gas, they can form a binary system and orbit each other from birth. If those two stars are at least a few times as massive as our sun, their lives will both end in supernova explosions. The more massive star explodes first, leaving behind a neutron star. If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter. The matter falling onto the neutron star spins it up and reduces its magnetic field. This is called "recycling" because it returns the neutron star to a quickly-spinning state. Finally, the second star also explodes in a supernova, producing another neutron star. If this second explosion also fails to disrupt the binary, a double neutron star binary is formed. Otherwise, the spun-up neutron star is left with no companion and becomes a "disrupted recycled pulsar", spinning between a few and 50 times per second. [27]


The discovery of pulsars allowed astronomers to study an object never observed before, the neutron star. This kind of object is the only place where the behavior of matter at nuclear density can be observed (though not directly). Also, millisecond pulsars have allowed a test of general relativity in conditions of an intense gravitational field.


Relative position of the Sun to the center of the Galaxy and 14 pulsars with their periods denoted Pioneer plaque sun.svg
Relative position of the Sun to the center of the Galaxy and 14 pulsars with their periods denoted

Pulsar maps have been included on the two Pioneer Plaques as well as the Voyager Golden Record. They show the position of the Sun, relative to 14 pulsars, which are identified by the unique timing of their electromagnetic pulses, so that our position both in space and in time can be calculated by potential extraterrestrial intelligences. [28] Because pulsars are emitting very regular pulses of radio waves, its radio transmissions do not require daily corrections. Moreover, pulsar positioning could create a spacecraft navigation system independently, or be used in conjunction with satellite navigation. [29] [30]

Precise clocks

Generally, the regularity of pulsar emission does not rival the stability of atomic clocks. [31] However, for some millisecond pulsars, the regularity of pulsation is even more precise than an atomic clock. [32] For example, J0437-4715 has a period of 0.005757451936712637 s with an error of 1.7×10−17 s. This stability allows millisecond pulsars to be used in establishing ephemeris time [33] or in building pulsar clocks. [34]

Timing noise is the name for rotational irregularities observed in all pulsars. This timing noise is observable as random wandering in the pulse frequency or phase. [35] It is unknown whether timing noise is related to pulsar glitches.

Probes of the interstellar medium

The radiation from pulsars passes through the interstellar medium (ISM) before reaching Earth. Free electrons in the warm (8000 K), ionized component of the ISM and H II regions affect the radiation in two primary ways. The resulting changes to the pulsar's radiation provide an important probe of the ISM itself. [36]

Because of the dispersive nature of the interstellar plasma, lower-frequency radio waves travel through the medium slower than higher-frequency radio waves. The resulting delay in the arrival of pulses at a range of frequencies is directly measurable as the dispersion measure of the pulsar. The dispersion measure is the total column density of free electrons between the observer and the pulsar,

where is the distance from the pulsar to the observer and is the electron density of the ISM. The dispersion measure is used to construct models of the free electron distribution in the Milky Way. [37]

Additionally, turbulence in the interstellar gas causes density inhomogeneities in the ISM which cause scattering of the radio waves from the pulsar. The resulting scintillation of the radio waves—the same effect as the twinkling of a star in visible light due to density variations in the Earth's atmosphere—can be used to reconstruct information about the small scale variations in the ISM. [38] Due to the high velocity (up to several hundred km/s) of many pulsars, a single pulsar scans the ISM rapidly, which results in changing scintillation patterns over timescales of a few minutes. [39]

Probes of space-time

Pulsars orbiting within the curved space-time around Sgr A*, the supermassive black hole at the center of the Milky Way, could serve as probes of gravity in the strong-field regime. [40] Arrival times of the pulses would be affected by special- and general-relativistic Doppler shifts and by the complicated paths that the radio waves would travel through the strongly curved space-time around the black hole. In order for the effects of general relativity to be measurable with current instruments, pulsars with orbital periods less than about 10 years would need to be discovered; [40] such pulsars would orbit at distances inside 0.01 pc from Sgr A*. Searches are currently underway; at present, five pulsars are known to lie within 100 pc from Sgr A*. [41]

Gravitational waves detectors

There are 3 consortia around the world which use pulsars to search for gravitational waves. In Europe, there is the European Pulsar Timing Array (EPTA); there is the Parkes Pulsar Timing Array (PPTA) in Australia; and there is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) in Canada and the US. Together, the consortia form the International Pulsar Timing Array (IPTA). The pulses from Millisecond Pulsars (MSPs) are used as a system of Galactic clocks. Disturbances in the clocks will be measurable at Earth. A disturbance from a passing gravitational wave will have a particular signature across the ensemble of pulsars, and will be thus detected.

Significant pulsars

Pulsars within 300 pc [42]
J0030+0451 2447,580
J0108−1431 238166
J0437−4715 1561,590
J0633+1746 1560.342
J0659+1414 2900.111
J0835−4510 2900.0113
J0453+0755 26017.5
J1045−4509 3006,710
J1741−2054 2500.387
J1856−3754 1613.76
J2144−3933 165272
Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope. Fermi's Gamma-ray Pulsars.jpg
Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope.

The pulsars listed here were either the first discovered of its type, or represent an extreme of some type among the known pulsar population, such as having the shortest measured period.

See also


  1. "Definition of PULSAR". www.merriam-webster.com.
  2. Sullivan, Walter (February 9, 1983). "PULSAR TERMED MOST ACCURATE 'CLOCK' IN SKY". NY Times. The New York Times. Retrieved January 15, 2018.
  3. Pranab Ghosh, Rotation and accretion powered pulsars. World Scientific, 2007, p.2.
  4. M. S. Longair, Our evolving universe. CUP Archive, 1996, p.72.
  5. M. S. Longair, High energy astrophysics, Volume 2. Cambridge University Press, 1994, p.99.
  6. S. Jocelyn Bell Burnell (1977). "Little Green Men, White Dwarfs or Pulsars?". Cosmic Search Magazine. Retrieved 2008-01-30. (after-dinner speech with the title of Petit Four given at the Eighth Texas Symposium on Relativistic Astrophysics; first published in Annals of the New York Academy of Science, vol. 302, pages 685–689, Dec., 1977)
  7. Bell Burnell, S. Jocelyn (23 April 2004). "So Few Pulsars, So Few Females". Science. 304 (5670): 489. doi:10.1126/science.304.5670.489. PMID   15105461.
  8. Courtland, Rachel. "Pulsar Detected by Gamma Waves Only." New Scientist, 17 October 2008.
  9. Daily Telegraph, 21/3, 5 March 1968.
  10. Baade, W.; Zwicky, F. (1934). "Remarks on Super-Novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76. Bibcode:1934PhRv...46...76B. doi:10.1103/PhysRev.46.76.2.
  11. Woltjer, L. (1964). "X-rays and Type I Supernovae". Astrophysical Journal. 140: 1309. Bibcode:1964ApJ...140.1309W. doi:10.1086/148028.
  12. Pacini, F. (1967). "Energy Emission from a Neutron Star". Nature. 216 (5115): 567–568. Bibcode:1967Natur.216..567P. doi:10.1038/216567a0.
  13. Gold, T. (1968). "Rotating Neutron Stars as the Origin of the Pulsating Radio Sources". Nature. 218 (5143): 731–732. Bibcode:1968Natur.218..731G. doi:10.1038/218731a0.
  14. Lyne & Graham-Smith, pp. 1–7 (1998).
  15. "Press Release: The Nobel Prize in Physics 1974". 15 October 1974. Retrieved 2014-01-19.
  16. Bell Burnell, S. Jocelyn. Little Green Men, White Dwarfs, or Pulsars? Annals of the New York Academy of Science, vol. 302, pages 685–689, Dec., 1977
  17. Weisberg, J.M.; Nice, D.J. & Taylor, J.H. (2010). "Timing measurements of the relativistic binary pulsar PSR B1913+ 16" (PDF). The Astrophysical Journal. 722 (2): 1030–1034. arXiv: 1011.0718 . Bibcode:2010ApJ...722.1030W. doi:10.1088/0004-637X/722/2/1030.
  18. "Nobel Prize in Physics 1993" . Retrieved 2010-01-07.
  19. D. Backer; Kulkarni, Shrinivas R.; Heiles, Carl; Davis, M. M.; Goss, W. M. (1982). "A millisecond pulsar". Nature. 300 (5893): 315–318. Bibcode:1982Natur.300..615B. doi:10.1038/300615a0.
  20. 1 2 Buckley, D. A. H.; Meintjes, P. J.; Potter, S. B.; Marsh, T. R.; Gänsicke, B. T. (2017-01-23). "Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii". Nature Astronomy. 1 (2): 0029. arXiv: 1612.03185 . Bibcode:2017NatAs...1E..29B. doi:10.1038/s41550-016-0029. ISSN   2397-3366.
  21. Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T. (September 2016). "A radio-pulsing white dwarf binary star". Nature. 537 (7620): 374–377. arXiv: 1607.08265 . Bibcode:2016Natur.537..374M. doi:10.1038/nature18620. PMID   27462808.
  22. Lyne, Andrew G.; Graham-Smith, Francis. Pulsar Astronomy. Cambridge University Press, 1998.
  23. "Pulsar Beacon Animation" . Retrieved 2010-04-03.
  24. "Pulsars" . Retrieved 2010-04-03.
  25. 1 2 "Pulsars". www.cv.nrao.edu.
  26. "Old Pulsars Still Have New Tricks to Teach Us". Staff. ESA. 26 July 2006. Retrieved 30 April 2013.
  27. Background material on "Disrupted Recycled Pulsar" in press release on the pulsar found by Einstein@Home "Archived copy" (PDF). Archived from the original (PDF) on 2010-08-14. Retrieved 2010-09-23.CS1 maint: Archived copy as title (link)
  28. "Voyager – The Spacecraft". voyager.jpl.nasa.gov.
  29. Marissa Cevallos, Science News,"HOW TO USE A PULSAR TO FIND STARBUCKS", Discovery News, Wed Nov 24, 2010 10:21 am ET .
  30. Angelo Tartaglia; Matteo Luca Ruggiero; Emiliano Capolongo (2011). "A null frame for spacetime positioning by means of pulsating sources". Advances in Space Research. 47 (4): 645–653. arXiv: 1001.1068 . Bibcode:2011AdSpR..47..645T. doi:10.1016/j.asr.2010.10.023.
  31. John G. Hartnett; Andre Luiten (2011). "Colloquium: Comparison of Astrophysical and Terrestrial Frequency Standards". Reviews of Modern Physics. 83 (1): 1–9. arXiv: 1004.0115 . Bibcode:2011RvMP...83....1H. doi:10.1103/RevModPhys.83.1.
  32. Matsakis, D. N.; Taylor, J. H.; Eubanks, T. M. (1997). "A Statistic for Describing Pulsar and Clock Stabilities" (PDF). Astronomy and Astrophysics. 326: 924–928. Bibcode:1997A&A...326..924M . Retrieved 2010-04-03.
  33. Backer, Don (1984). "The 1.5 Millisecond Pulsar". Annals of the New York Academy of Sciences. 422 (Eleventh Texas Symposium on Relativistic Astrophysics): 180–181. Bibcode:1984NYASA.422..180B. doi:10.1111/j.1749-6632.1984.tb23351.x. Archived from the original on 2013-01-05. Retrieved 2010-02-14.
  34. "World's most accurate clock to be built in Gdańsk". Polska Agencja Prasowa. 2010. Retrieved 2012-03-20.[ permanent dead link ]
  35. "African Skies 4 – Radio Pulsar Glitch Studies".
  36. Ferrière, Katia (2001). "The Interstellar Environment of Our Galaxy". Reviews of Modern Physics. 73 (4): 1031–1066. arXiv: astro-ph/0106359 . Bibcode:2001RvMP...73.1031F. doi:10.1103/RevModPhys.73.1031.
  37. Taylor, J. H.; Cordes, J. M. (1993). "Pulsar Distances and the Galactic Distribution of Free Electrons". Astrophysical Journal. 411: 674. Bibcode:1993ApJ...411..674T. doi:10.1086/172870.
  38. Rickett, Barney J. (1990). "Radio Propagation Through the Turbulent Interstellar Plasma". Annual Review of Astronomy and Astrophysics. 28: 561–605. Bibcode:1990ARA&A..28..561R. doi:10.1146/annurev.aa.28.090190.003021.
  39. Rickett, Barney J.; Lyne, Andrew G.; Gupta, Yashwant (1997). "Interstellar Fringes from Pulsar B0834+06". Monthly Notices of the Royal Astronomical Society . 287 (4): 739–752. Bibcode:1997MNRAS.287..739R. doi:10.1093/mnras/287.4.739.
  40. 1 2 Angelil, R.; Saha, P.; Merritt, D. (2010). "Towards relativistic orbit fitting of Galactic center stars and pulsars". The Astrophysical Journal. 720 (2): 1303–1310. arXiv: 1007.0007 . Bibcode:2010ApJ...720.1303A. doi:10.1088/0004-637X/720/2/1303.
  41. Deneva, J. S.; Cordes, J. M.; Lazio, T. J. W. (2009). "Discovery of Three Pulsars from a Galactic Center Pulsar Population". The Astrophysical Journal Letters. 702 (2): L177–182. arXiv: 0908.1331 . Bibcode:2009ApJ...702L.177D. doi:10.1088/0004-637X/702/2/L177.
  42. Abt, Helmut A. (May 2011). "The Age of the Local Interstellar Bubble". The Astronomical Journal. 141 (5): 165. Bibcode:2011AJ....141..165A. doi:10.1088/0004-6256/141/5/165.
  43. Hewish, A. et al. "Observation of a Rapidly Pulsating Radio Source." Nature, Volume 217, 1968 (pages 709–713).
  44. Buckley, D. A. H.; Meintjes, P. J.; Potter, S. B.; Marsh, T. R.; Gänsicke, B. T. (2017-01-23). "Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii". Nature Astronomy. 1 (2): 0029. arXiv: 1612.03185 . Bibcode:2017NatAs...1E..29B. doi:10.1038/s41550-016-0029. ISSN   2397-3366.
  45. Tan, C. M.; Bassa, C. G.; Cooper, S.; Dijkema, T. J.; Esposito, P.; Hessels, J. W. T.; Kondratiev, V. I.; Kramer, M.; Michilli, D.; Sanidas, S.; Shimwell, T. W.; Stappers, B. W.; van Leeuwen, J.; Cognard, I.; Grießmeier, J.-M.; Karastergiou, A.; Keane, E. F.; Sobey, C.; Weltevrede, P. (2018). "LOFAR Discovery of a 23.5 s Radio Pulsar". The Astrophysical Journal. 866 (1): 54. arXiv: 1809.00965 . Bibcode:2018ApJ...866...54T. doi:10.3847/1538-4357/aade88.
  46. O'Brien, Tim. "Part-time pulsar yields new insight into inner workings of cosmic clocks | Jodrell Bank Centre for Astrophysics". www.jb.man.ac.uk. Retrieved 23 July 2017.
  47. Champion, David J.; Ransom, S. M.; Lazarus, P.; Camilo, F.; Bassa, C.; Kaspi, V. M.; Nice, D. J.; Freire, P. C. C.; Stairs, I. H.; Van Leeuwen, J.; Stappers, B. W.; Cordes, J. M.; Hessels, J. W. T.; Lorimer, D. R.; Arzoumanian, Z.; Backer, D. C.; Bhat, N. D. R.; Chatterjee, S.; Cognard, I.; Deneva, J. S.; Faucher-Giguere, C.-A.; Gaensler, B. M.; Han, J.; Jenet, F. A.; Kasian, L.; Kondratiev, V. I.; Kramer, M.; Lazio, J.; McLaughlin, M. A.; et al. (2008). "An Eccentric Binary Millisecond Pulsar in the Galactic Plane". Science. 320 (5881): 1309–1312. arXiv: 0805.2396 . Bibcode:2008Sci...320.1309C. doi:10.1126/science.1157580. PMID   18483399.
  48. Knispel, B.; Allen, B; Cordes, JM; Deneva, JS; Anderson, D; Aulbert, C; Bhat, ND; Bock, O; et al. (2010). "Pulsar Discovery by Global Volunteer Computing". Science. 329 (5997): 1305. arXiv: 1008.2172 . Bibcode:2010Sci...329.1305K. doi:10.1126/science.1195253. PMID   20705813.
  49. Pletsch, H. J.; Guillemot; Fehrmann, H.; Allen, B.; Kramer, M.; Aulbert, C.; Ackermann, M.; Ajello, M.; De Angelis, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; et al. (2012). "Binary millisecond pulsar discovery via gamma-ray pulsations". Science. 338 (6112): 1314–7. arXiv: 1211.1385 . Bibcode:2012Sci...338.1314P. doi:10.1126/science.1229054. PMID   23112297.

References and further reading

Related Research Articles

Timeline of neutron stars, pulsars, supernovae, and white dwarfs

X-ray pulsars or accretion-powered pulsars are a class of astronomical objects that are X-ray sources displaying strict periodic variations in X-ray intensity. The X-ray periods range from as little as a fraction of a second to as much as several minutes.

Crab Pulsar star

The Crab Pulsar is a relatively young neutron star. The star is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on Earth in the year 1054. Discovered in 1968, the pulsar was the first to be connected with a supernova remnant.

Millisecond pulsar

A millisecond pulsar (MSP) is a pulsar with a rotational period in the range of about 1–10 milliseconds. Millisecond pulsars have been detected in the radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading theory for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars which have been spun up or "recycled" through accretion of matter from a companion star in a close binary system. For this reason, millisecond pulsars are sometimes called recycled pulsars.

PSR J0737-3039

PSR J0737−3039 is the only known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the radio astronomer Marta Burgay during a high-latitude pulsar survey.

Hulse–Taylor binary pulsar in the constellation Aquila

PSR B1913+16 is a pulsar which together with another neutron star is in orbit around a common center of mass, thus forming a binary star system. PSR 1913+16 was the first binary pulsar to be discovered. It was discovered by Russell Alan Hulse and Joseph Hooton Taylor, Jr., of the University of Massachusetts Amherst in 1974. Their discovery of the system and analysis of it earned them the 1993 Nobel Prize in Physics "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation."

Binary pulsar pulsar with a binary companion, often a white dwarf or neutron star

A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. Binary pulsars are one of the few objects which allow physicists to test general relativity because of the strong gravitational fields in their vicinities. Although the binary companion to the pulsar is usually difficult or impossible to observe directly, its presence can be deduced from the timing of the pulses from the pulsar itself, which can be measured with extraordinary accuracy by radio telescopes.

Radio-quiet neutron star

A radio-quiet neutron star is a neutron star that does not seem to emit radio emissions, but is still visible to Earth through electromagnetic radiation at other parts of the spectrum, particularly x-rays and gamma rays.

Stellar rotation angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

PSR J1903+0327 is a millisecond pulsar in a highly eccentric binary orbit.

PSR J0437-4715 is a pulsar. Discovered in the Parkes 70 cm survey, it remains the closest and brightest millisecond pulsar (MSP) known. The pulsar rotates about its axis 173.7 times per second and therefore completes a rotation every 5.75 milliseconds. It emits a searchlight-like radio beam that sweeps past the Earth each time it rotates. Currently the most precisely located object outside of the Solar System, PSR J0437-4715 is 156.3 parsecs or 509.8 light years distant.

PSR B1937+21 star

PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch. PSR B1937+21 was discovered in 1982 by Don Backer, Shri Kulkarni, Carl Heiles, Michael Davis, and Miller Goss.

PSR J0108-1431 is a solitary pulsar located at a distance of about 130 parsecs (424 light years) in the constellation Cetus. This pulsar was discovered in 1994 during the Parkes Southern Pulsar Survey. It is considered a very old pulsar with an estimated age of 166 million years and a rotation period of 0.8 seconds. The rotational energy being generated by the spin-down of this pulsar is 5.8 × 1023 W and the surface magnetic field is 2.5 × 107 T. As of 2008, it is the second faintest known pulsar.

PSR J1614–2230 is a neutron star in a binary system with a white dwarf. It was discovered in 2006 with the Parkes telescope in a survey of unidentified gamma ray sources in the Energetic Gamma Ray Experiment Telescope catalog. PSR J1614–2230 is a millisecond pulsar, a type of neutron star, that spins on its axis roughly 317 times per second, corresponding to a period of 3.15 milliseconds. Like all pulsars, it emits radiation in a beam, similar to a lighthouse. Emission from PSR J1614–2230 is observed as pulses at the spin period of PSR J1614–2230. The pulsed nature of its emission allows for the arrival of individual pulses to be timed. By measuring the arrival time of pulses, astronomers observed the delay of pulse arrivals from PSR J1614–2230 when it was passing behind its companion from the vantage point of Earth. By measuring this delay, known as the Shapiro delay, astronomers determined the mass of PSR J1614–2230 and its companion. The team performing the observations found that the mass of PSR J1614–2230 is 1.97 ± 0.04 M. This mass made PSR J1614–2230 the most massive known neutron star at the time of discovery, and rules out many neutron star equations of state that include exotic matter such as hyperons and kaon condensates.

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a consortium of astronomers who share a common goal of detecting gravitational waves via regular observations of an ensemble of millisecond pulsars using the Green Bank and Arecibo radio telescopes. This project is being carried out in collaboration with international partners in the Parkes Pulsar Timing Array in Australia and the European Pulsar Timing Array as part of the International Pulsar Timing Array.

PSR J1719-1438 is a millisecond pulsar with a spin period of 5.8 ms located about 4,000 ly from Earth in the direction of Serpens Cauda, one minute from the border with Ophiuchus. Millisecond pulsars are generally thought to begin as normal pulsars and then spin up by accreting matter from a binary companion.

PSR J1311–3430 star

PSR J1311–3430 is a pulsar with a spin period of 2.5 milliseconds. It is the first millisecond pulsar found via gamma-ray pulsations. The source was originally identified by the Energetic Gamma Ray Experiment Telescope as a bright gamma ray source, but was not recognized as a pulsar until observations with the Fermi Gamma-ray Space Telescope discovered pulsed gamma ray emission. The pulsar has a helium-dominated companion much less massive than itself, and the two are in an orbit with a period of 93.8 minutes. The system is explained by a model where mass from the low mass companion was transferred on to the pulsar, increasing the mass of the pulsar and decreasing its period. These systems are known as Black Widow Pulsars, named after the original such system discovered, PSR B1957+20, and may eventually lead to the companion being completely vaporized. Among systems like these, the orbital period of PSR J1311–3430 is the shortest ever found. Spectroscopic observations of the companion suggest that the mass of the pulsar is 2.7 . Though there is considerable uncertainty in this estimate, the minimum mass for the pulsar that the authors find adequately fits the data is 2.15 , which is still more massive than PSR J1614–2230, the previous record holder for most massive known pulsar.

PSR J0348+0432 star

PSR J0348+0432 is a neutron star in a binary system with a white dwarf. It was discovered in 2007 with the Green Bank Telescope in a drift-scan survey.