Neutron star merger

Last updated

Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova Eso1733s Artist's impression of merging neutron stars.jpg
Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova

A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole. The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. These events are believed to create short gamma-ray bursts. [2]

Contents

The merger of neutron stars momentarily creates an environment of such extreme neutron flux that the r-process can occur. This reaction accounts for the nucleosynthesis of around half of the isotopes in elements heavier than iron. [3]

The mergers also produce kilonovae, [4] which are transient sources of isotropic longer wave electromagnetic radiation due to the radioactive decay of heavy r-process nuclei that are produced and ejected during the merger process. [5] Kilonovae had been discussed as a possible r-process site since the reaction was first proposed in 1999, but the mechanism became widely accepted after multi-messenger event GW170817 was observed in 2017.

Observed mergers

17 August 2017: Gravitational wave (GW170817) detected from merger of two neutron stars (00:23 video; artist concept).

On 17 August 2017, the LIGO and Virgo interferometers observed GW170817, [6] a gravitational wave associated with the merger of two neutron stars in NGC 4993, an elliptical galaxy in the constellation Hydra about 140 million light years away. [7] GW170817 co-occurred with a short (roughly 2-second long) gamma-ray burst, GRB 170817A, first detected 1.7 seconds after the GW merger signal, and a visible light observational event first observed 11 hours afterwards, SSS17a. [8] [9] [10] [11] [12]

The co-occurrence of GW170817 with GRB 170817A in both space and time strongly implies that neutron star mergers create short gamma-ray bursts. The subsequent detection of Swope Supernova Survey event 2017a (SSS17a) [13] in the area where GW170817 and GRB 170817A were known to have occurred—and its having the expected characteristics of a kilonova—strongly imply that neutron star mergers are responsible for kilonovae as well. [14]

In February 2018, the Zwicky Transient Facility began to track neutron star events via gravitational wave observation, [15] as evidenced by "systematic samples of tidal disruption events". [16] Later that year, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to GW170817 and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers. [17] [18] [19] [20]

Also in October 2018, scientists presented a new way to use information from gravitational wave events (especially those involving the merger of neutron stars like GW170817) to determine the Hubble constant, which establishes the rate of expansion of the universe. [21] [22] The two earlier methods for finding the Hubble constant—one based on redshifts and another based on the cosmic distance ladder—disagree by about 10%. This difference, the Hubble tension, might be reconciled by using kilonovae as another type of standard candle. [23]

In April 2019, the LIGO and Virgo gravitational wave observatories announced the detection of a candidate event that is, with a probability 99.94%, the merger of two neutron stars. Despite extensive follow-up observations, no electromagnetic counterpart could be identified. [24] [25] [26]

In 2023, an observation of the kilonova GRB 230307A was published, including likely observations of the spectra of tellurium and lanthanide elements. [27]

XT2 (magnetar)

In 2019, analysis of data from the Chandra X-ray Observatory revealed another binary neutron star merger at a distance of 6.6 billion light years, an x-ray signal called XT2. The merger produced a magnetar; its emissions could be detected for several hours. [28]

Effect on Earth

The cosmic rays emitted by a neutron star merger occurring any less than 10 parsecs from Earth would result in conclusive human extinction. [29] By comparison, for short Gamma Ray Bursts (sGRB) the lethal zone extends hundreds of parsecs. [30] Other sources such as near-earth supernovae emit high-energy photons in the form of gamma rays and x-rays; these would destroy Earth's ozone layer, exposing the population to fatal levels of UVB radiation from the Sun.

Compared to these, neutron star mergers are unique in that they emit multiple sources of harmful radiation, including emission from the radioactive decay of heavy elements [31] scattered by the sGRB cocoon, [32] the sGRB afterglow itself, [33] and cosmic rays accelerated by the blast. In order of arrival, the photons are first after the merger, and the cosmic rays arrive hundreds to thousands of years later. (See: Multi-messenger astronomy) The ejected material sweeps up the interstellar medium and creates a supernova-remnant-like bubble holding a lethal dose of cosmic rays. If the Earth were to be engulfed by the remnant, these cosmic rays—like the gamma rays—would deplete the ozone and could interact with the atmosphere, yielding weakly-interacting muons. The flux density of these generated particles would be sufficient to sterilize the planet, penetrating even deep into caves and underwater. The danger to life lies in the particles' ability to disrupt DNA, causing birth defects and mutations. [34] [35]

Relative to supernovae, binary neutron star (BNS) mergers influence a similar volume of space, but they are much rarer and have a stronger dependence on the orientation of the event with respect to Earth. Accordingly, the overall threat of a BNS event to human extinction is extremely low. [29]

Distribution of Heavy Metals

Neutron star mergers are rare, so most stars will form out of gas clouds which have few r-process metals. Our own solar system, however, did form from a gas cloud enriched with heavy metals.[ citation needed ] This suggests that metals heavier than iron, such as the platinum group metals, the rare earth elements, and the radioactive elements will be rarer in most solar systems as compared to our own.

See also

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. They have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (M), or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.

Timeline of neutron stars, pulsars, supernovae, and white dwarfs

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

Nial Rahil Tanvir is a British astronomer at the University of Leicester. His research specialisms are the Extragalactic distance scale, Galaxy evolution and Gamma ray bursts. Tanvir has featured in various TV programs, including The Sky at Night hosted by Sir Patrick Moore, and Horizon

<span class="mw-page-title-main">GRB 101225A</span> Gamma-ray burst event of December 25, 2010

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

<span class="mw-page-title-main">Kilonova</span> Neutron star merger

A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.

Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, each of which may independently emit signals of a characteristic "messenger" type: electromagnetic radiation, gravitational waves, neutrinos, and cosmic rays. When received on Earth, identifying that disparate observations were generated by the same source can allow for improved reconstruction or a better understanding of the event, and reveals more information about the source.

<span class="mw-page-title-main">First observation of gravitational waves</span> Detection made by LIGO and Virgo interferometers (2015)

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense gamma rays that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993, about 140 million light years away. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It was the first GW observation to be confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

<span class="mw-page-title-main">NGC 4993</span> Galaxy in the constellation of Hydra

NGC 4993 is a lenticular galaxy located about 140 million light-years away in the constellation Hydra. It was discovered on 26 March 1789 by William Herschel and is a member of the NGC 4993 Group.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

Daryl Haggard is an American-Canadian astronomer and associate professor of physics in the Department of Physics at McGill University and the McGill Space Institute.

<span class="mw-page-title-main">GRB 150101B</span>

GRB 150101B is a gamma-ray burst (GRB) that was detected on 1 January 2015 at 15:23 UT by the Burst Alert Telescope (BAT) on board the Swift Observatory Satellite, and at 15:23:35 UT by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. The GRB was determined to be 1.7 billion light-years (0.52 Gpc) from Earth near the host galaxy 2MASX J12320498-1056010 in the constellation Virgo. The characteristics of GRB 150101B are remarkably similar to the historic event GW170817, a merger of neutron stars.

<span class="mw-page-title-main">GRB 230307A</span>

GRB 230307A was an extremely bright, long duration gamma-ray burst (GRB), likely produced as a consequence of a neutron star merger or black hole - neutron star merger event. It lasted around three minutes, and was observed to have a gamma ray fluence of 3×10-4 erg cm-2 in the 10 to 1000 KeV (electronvolt) range making it second only to GRB 221009A, which was an extremely bright and long duration gamma ray burst deemed to be the Brightest Of All Time. The burst was around 1000 times more powerful than a typical gamma-ray burst. The burst had the second-highest gamma-ray fluence ever recorded. The James Webb Space Telescope (JWST) detected the chemical signature for tellurium (Te). The neutron stars were once part of a spiral galaxy (host galaxy) but were kicked out via gravitational interactions. Then while outside of the main galaxy at a distance of 120,000 light years, they merged, creating GRB 230307A.

References

  1. "Einstein Telescope: Unlocking a New Era in Astronomy From 250 Meters Underground".
  2. Rosswog, Stephan (2013). "Astrophysics: Radioactive glow as a smoking gun". Nature. 500 (7464): 535–6. Bibcode:2013Natur.500..535R. doi: 10.1038/500535a . PMID   23985867. S2CID   4401544.
  3. Stromberg, Joseph (16 July 2013). "All the Gold in the Universe Could Come from the Collisions of Neutron Stars". Smithsonian . Retrieved 27 April 2014.
  4. "James Webb Space Telescope finds neutron star mergers forge gold in the cosmos: 'It was thrilling'". Space.com . 21 February 2024.
  5. Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A "kilonova" associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv: 1306.4971 . Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID   23912055. S2CID   205235329.
  6. Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv: 1710.05832 . Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID   29099225. S2CID   217163611.
  7. Scharping, Nathaniel (18 October 2017). "Gravitational Waves Show How Fast The Universe is Expanding". Astronomy . Retrieved 18 October 2017.
  8. Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science . Retrieved 16 October 2017.
  9. Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA . Retrieved 16 October 2017.
  10. Overbye, Dennis (16 October 2017). "LIGO Detects Fierce Collision of Neutron Stars for the First Time". The New York Times . Retrieved 16 October 2017.
  11. Krieger, Lisa M. (16 October 2017). "A Bright Light Seen Across The Universe, Proving Einstein Right - Violent collisions source of our gold, silver". The Mercury News . Retrieved 16 October 2017.
  12. Abbott, B. P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal . 848 (2): L12. arXiv: 1710.05833 . Bibcode:2017ApJ...848L..12A. doi: 10.3847/2041-8213/aa91c9 . The optical and near-infrared spectra over these few days provided convincing arguments that this transient was unlike any other discovered in extensive optical wide-field surveys over the past decade.
  13. Pan, Y.-C.; et al. (2017). "The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source". The Astrophysical Journal. 848 (2): L30. arXiv: 1710.05439 . Bibcode:2017ApJ...848L..30P. doi: 10.3847/2041-8213/aa9116 . S2CID   3516168.
  14. Nature Astronomy (16 Oct 2017) Kilonovae, short gamma-ray bursts & neutron star mergers
  15. Pease, Roland (2 May 2019). "Gravitational waves hunt now in overdrive". BBC News.
  16. Eric C. Bellm, Shrinivas R. Kulkarni, Matthew J. Graham, Richard Dekany, Roger M. Smith, Reed Riddle, Frank J. Masci, George Helou, Thomas A. Prince, Scott M. Adams (2018 December 7) The Zwicky Transient Facility: System Overview, Performance, and First Results
  17. "All in the family: Kin of gravitational wave source discovered". EurekAlert! (Press release). University of Maryland. 16 October 2018. Retrieved 17 October 2018.
  18. Troja, E.; et al. (16 October 2018). "A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341". Nature Communications . 9 (1): 4089. arXiv: 1806.10624 . Bibcode:2018NatCo...9.4089T. doi: 10.1038/s41467-018-06558-7 . PMC   6191439 . PMID   30327476.
  19. Mohon, Lee (16 October 2018). "GRB 150101B: A Distant Cousin to GW170817". NASA . Retrieved 17 October 2018.
  20. Wall, Mike (17 October 2018). "Powerful Cosmic Flash Is Likely Another Neutron-Star Merger". Space.com . Retrieved 17 October 2018.
  21. Lerner, Louise (22 October 2018). "Gravitational waves could soon provide measure of universe's expansion". Phys.org . Retrieved 22 October 2018.
  22. Chen, Hsin-Yu; Fishbach, Maya; Holz, Daniel E. (17 October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature . 562 (7728): 545–547. arXiv: 1712.06531 . Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID   30333628. S2CID   52987203.
  23. Charlie Wood (13 Dec 2021) Cosmologists Parry Attacks on the Vaunted Cosmological Principle
  24. "Breaking: LIGO Detects Gravitational Waves From Another Neutron Star Merger". D-brief. 25 April 2019. Retrieved 13 August 2019.
  25. "GraceDB |". gracedb.ligo.org. Retrieved 13 August 2019.
  26. Hosseinzadeh, G.; Cowperthwaite, P. S.; Gomez, S.; Villar, V. A. (18 July 2019). "Follow-up of the Neutron Star Bearing Gravitational Wave Candidate Events S190425z and S190426c with MMT and SOAR". Astrophys. J. 880 (1): L4. arXiv: 1905.02186 . Bibcode:2019ApJ...880L...4H. doi: 10.3847/2041-8213/ab271c . hdl:10150/633863. S2CID   146121014.
  27. Levan, Andrew; Gompertz, Benjamin P.; Salafia, Om Sharan; Bulla, Mattia; Burns, Eric; Hotokezaka, Kenta; Izzo, Luca; Lamb, Gavin P.; Malesani, Daniele B.; Oates, Samantha R.; Ravasio, Maria Edvige; Rouco Escorial, Alicia; Schneider, Benjamin; Sarin, Nikhil; Schulze, Steve (25 October 2023). "Heavy element production in a compact object merger observed by JWST". Nature. 626 (8000): 737–741. arXiv: 2307.02098 . doi:10.1038/s41586-023-06759-1. ISSN   0028-0836. PMC   10881391 . PMID   37879361.
  28. Klesman, Alison (18 April 2019). "A new neutron star merger is caught on X-ray camera". Astronomy. Retrieved 18 April 2019.
  29. 1 2 Perkins, Haille M. L.; Ellis, John; Fields, Brian D.; Hartmann, Dieter H.; Liu, Zhenghai; McLaughlin, Gail C.; Surman, Rebecca; Wang, Xilu (1 February 2024). "Could a Kilonova Kill: A Threat Assessment". The Astrophysical Journal. 961 (2): 170. arXiv: 2310.11627 . Bibcode:2024ApJ...961..170P. doi: 10.3847/1538-4357/ad12b7 . ISSN   0004-637X. We found that cosmic rays are ... potentially lethal out to ∼10 pc, similar to the typical value of 8−20 pc for [core-collapse supernovae] ... The rarity of [binary neutron star mergers] combined with a small range of lethality means that ... the mean recurrence time of lethal mergers [on Earth] is much larger than the age of the Universe.
  30. Melott, Adrian L.; Thomas, Brian C. (May 2011). "Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources". Astrobiology. 11 (4): 343–361. arXiv: 1102.2830 . Bibcode:2011AsBio..11..343M. doi:10.1089/ast.2010.0603. ISSN   1531-1074. PMID   21545268.
  31. Wang 王夕露), Xilu; N3AS Collaboration; Vassh, Nicole; FIRE Collaboration; Sprouse, Trevor; Mumpower, Matthew; Vogt, Ramona; Randrup, Jorgen; Surman, Rebecca (1 November 2020). "MeV Gamma Rays from Fission: A Distinct Signature of Actinide Production in Neutron Star Mergers". The Astrophysical Journal Letters. 903 (1): L3. arXiv: 2008.03335 . Bibcode:2020ApJ...903L...3W. doi: 10.3847/2041-8213/abbe18 . ISSN   2041-8205.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  32. Kisaka, Shota; Ioka, Kunihito; Kashiyama, Kazumi; Nakamura, Takashi (1 November 2018). "Scattered Short Gamma-Ray Bursts as Electromagnetic Counterparts to Gravitational Waves and Implications of GW170817 and GRB 170817A". The Astrophysical Journal. 867 (1): 39. arXiv: 1711.00243 . Bibcode:2018ApJ...867...39K. doi: 10.3847/1538-4357/aae30a . ISSN   0004-637X.
  33. Makhathini, S.; Mooley, K. P.; Brightman, M.; Hotokezaka, K.; Nayana, A. J.; Intema, H. T.; Dobie, D.; Lenc, E.; Perley, D. A.; Fremling, C.; Moldòn, J.; Lazzati, D.; Kaplan, D. L.; Balasubramanian, A.; Brown, I. S. (1 December 2021). "The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications". The Astrophysical Journal. 922 (2): 154. arXiv: 2006.02382 . Bibcode:2021ApJ...922..154M. doi: 10.3847/1538-4357/ac1ffc . ISSN   0004-637X.
  34. Dar, Arnon; Laor, Ari; Shaviv, Nir J. (29 June 1998). "Life Extinctions by Cosmic Ray Jets". Physical Review Letters. 80 (26): 5813–5816. arXiv: astro-ph/9705008 . Bibcode:1998PhRvL..80.5813D. doi:10.1103/PhysRevLett.80.5813. ISSN   0031-9007.
  35. Juckett, David A. (November 2009). "A 17-year oscillation in cancer mortality birth cohorts on three continents – synchrony to cosmic ray modulations one generation earlier". International Journal of Biometeorology. 53 (6): 487–499. Bibcode:2009IJBm...53..487J. doi:10.1007/s00484-009-0237-0. ISSN   0020-7128. PMID   19506913.