Gravitational-wave astronomy

Last updated
Data about the first observation of gravitational waves from LIGO and Virgo interferometer LIGO measurement of gravitational waves.png
Data about the first observation of gravitational waves from LIGO and Virgo interferometer

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources. [1]

Contents

Gravitational waves are minute distortions or ripples in spacetime caused by the acceleration of massive objects. They are produced by cataclysmic events such as the merger of binary black holes, the coalescence of binary neutron stars, supernova explosions and processes including those of the early universe shortly after the Big Bang. Studying them offers a new way to observe the universe, providing valuable insights into the behavior of matter under extreme conditions. Similar to electromagnetic radiation (such as light wave, radio wave, infrared radiation and X-rays) which involves transport of energy via propagation of electromagnetic field fluctuations, gravitational radiation involves fluctuations of the relatively weaker gravitational field. The existence of gravitational waves was first suggested by Oliver Heaviside in 1893 and then later conjectured by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves before they were predicted by Albert Einstein in 1916 as a corollary to his theory of general relativity.

In 1978, Russell Alan Hulse and Joseph Hooton Taylor Jr. provided the first experimental evidence for the existence of gravitational waves by observing two neutron stars orbiting each other and won the 1993 Nobel Prize in physics for their work. In 2015, nearly a century after Einstein's forecast, the first direct observation of gravitational waves as a signal from the merger of two black holes confirmed the existence of these elusive phenomena and opened a new era in astronomy. Subsequent detections have included binary black hole mergers, neutron star collisions, and other violent cosmic events. Gravitational waves are now detected using laser interferometry, which measures tiny changes in the length of two perpendicular arms caused by passing waves. Observatories like LIGO (Laser Interferometer Gravitational-wave Observatory), Virgo and KAGRA (Kamioka Gravitational Wave Detector) use this technology to capture the faint signals from distant cosmic events. LIGO co-founders Barry C. Barish, Kip S. Thorne, and Rainer Weiss were awarded the 2017 Nobel Prize in Physics for their ground-breaking contributions in gravitational wave astronomy.

When distant astronomical objects are observed using electromagnetic waves, different phenomena like scattering, absorption, reflection, refraction, etc. causes information loss. There remains various regions in space only partially penetrable by photons, such as the insides of nebulae, the dense dust clouds at the galactic core, the regions near black holes, etc. Gravitational astronomy have the potential to be used parallelly with electromagnetic astronomy to study the universe at a better resolution. In an approach known as multi-messenger astronomy, gravitational wave data is combined with data from other wavelengths to get a more complete picture of astrophysical phenomena. Gravitational wave astronomy helps understand the early universe, test theories of gravity, and reveal the distribution of dark matter and dark energy. Particularly, it can help find the Hubble constant, which tells about the rate of accelerated expansion of the universe. All of these open doors to a physics beyond the Standard Model (BSM).

Challenges that remain in the field include noise interference, the lack of ultra-sensitive instruments, and the detection of low-frequency waves. Ground-based detectors face problems with seismic vibrations produced by environmental disturbances and the limitation of the arm length of detectors due to the curvature of the Earth’s surface. In the future, the field of gravitational wave astronomy will try develop upgraded detectors and next-generation observatories, along with possible space-based detectors such as LISA (Laser Interferometer Space Antenna). LISA will be able to listen to distant sources like compact supermassive black holes in the galactic core and primordial black holes, as well as low-frequency sensitive signals sources such as binary white dwarf merger and sources from the early universe. [2]

Introduction

Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent.

Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. [3] Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed) – showing one of the ways the methods of Newtonian physics are unable to explain phenomena associated with relativity.

The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the Nobel Prize in Physics for this discovery.

Direct observation of gravitational waves was not made until 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington. The 2017 Nobel Prize in Physics was subsequently awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the direct detection of gravitational waves.

In gravitational-wave astronomy, observations of gravitational waves are used to infer data about the sources of gravitational waves. Sources that can be studied this way include binary star systems composed of white dwarfs, neutron stars, and black holes; events such as supernovae; and the formation of the early universe shortly after the Big Bang.

Instruments and challenges

Collaboration between detectors aids in collecting unique and valuable information, owing to different specifications and sensitivity of each. There are several ground-based laser interferometers which span several miles/kilometers, including: the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in WA and LA, USA; Virgo, at the European Gravitational Observatory in Italy; GEO600 in Germany, and the Kamioka Gravitational Wave Detector (KAGRA) in Japan. While LIGO, Virgo, and KAGRA have made joint observations to date, GEO600 is currently utilized for trial and test runs, due to lower sensitivity of its instruments, and has not participated in joint runs with the others recently.

Noise curves for a selection of gravitational-wave detectors as a function of frequency. At very low frequencies are pulsar timing arrays, at low frequencies are space-borne detectors, and at high frequencies are ground-based detectors. The characteristic strain of potential astrophysical sources are also shown. To be detectable the characteristic strain of a signal must be above the noise curve. Gravitational-wave detector sensitivities and astrophysical gravitational-wave sources.png
Noise curves for a selection of gravitational-wave detectors as a function of frequency. At very low frequencies are pulsar timing arrays, at low frequencies are space-borne detectors, and at high frequencies are ground-based detectors. The characteristic strain of potential astrophysical sources are also shown. To be detectable the characteristic strain of a signal must be above the noise curve.

High frequency

In 2015, the LIGO project was the first to directly observe gravitational waves using laser interferometers. [5] [6] The LIGO detectors observed gravitational waves from the merger of two stellar-mass black holes, matching predictions of general relativity. [7] [8] [9] These observations demonstrated the existence of binary stellar-mass black hole systems, and were the first direct detection of gravitational waves and the first observation of a binary black hole merger. [10] This finding has been characterized as revolutionary to science, because of the verification of our ability to use gravitational-wave astronomy to progress in our search and exploration of dark matter and the big bang.

Low frequency

An alternative means of observation is using pulsar timing arrays (PTAs). There are three consortia, the European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), and the Parkes Pulsar Timing Array (PPTA), which co-operate as the International Pulsar Timing Array. These use existing radio telescopes, but since they are sensitive to frequencies in the nanohertz range, many years of observation are needed to detect a signal and detector sensitivity improves gradually. Current bounds are approaching those expected for astrophysical sources. [11]

Plot of correlation between pulsars observed by NANOGrav (2023) vs angular separation between pulsars, compared with a theoretical Hellings-Downs model (dashed purple) and if there were no gravitational wave background (solid green) Correlation vs angular separation between pulsars.svg
Plot of correlation between pulsars observed by NANOGrav (2023) vs angular separation between pulsars, compared with a theoretical Hellings-Downs model (dashed purple) and if there were no gravitational wave background (solid green)

In June 2023, four PTA collaborations, the three mentioned above and the Chinese Pulsar Timing Array, delivered independent but similar evidence for a stochastic background of nanohertz gravitational waves. [14] Each provided an independent first measurement of the theoretical Hellings-Downs curve, i.e., the quadrupolar correlation between two pulsars as a function of their angular separation in the sky, which is a telltale sign of the gravitational wave origin of the observed background. [15] [16] [17] [18] The sources of this background remain to be identified, although binaries of supermassive black holes are the most likely candidates. [19]

Intermediate frequencies

Further in the future, there is the possibility of space-borne detectors. The European Space Agency has selected a gravitational-wave mission for its L3 mission, due to launch 2034, the current concept is the evolved Laser Interferometer Space Antenna (eLISA). [20] Also in development is the Japanese Deci-hertz Interferometer Gravitational wave Observatory (DECIGO).

Scientific value

Astronomy has traditionally relied on electromagnetic radiation. Originating with the visible band, as technology advanced, it became possible to observe other parts of the electromagnetic spectrum, from radio to gamma rays. Each new frequency band gave a new perspective on the Universe and heralded new discoveries. [21] During the 20th century, indirect and later direct measurements of high-energy, massive particles provided an additional window into the cosmos. Late in the 20th century, the detection of solar neutrinos founded the field of neutrino astronomy, giving an insight into previously inaccessible phenomena, such as the inner workings of the Sun. [22] [23] The observation of gravitational waves provides a further means of making astrophysical observations.

Russell Hulse and Joseph Taylor were awarded the 1993 Nobel Prize in Physics for showing that the orbital decay of a pair of neutron stars, one of them a pulsar, fits general relativity's predictions of gravitational radiation. [24] Subsequently, many other binary pulsars (including one double pulsar system) have been observed, all fitting gravitational-wave predictions. [25] In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the first detection of gravitational waves. [26] [27] [28]

Gravitational waves provide complementary information to that provided by other means. By combining observations of a single event made using different means, it is possible to gain a more complete understanding of the source's properties. This is known as multi-messenger astronomy. Gravitational waves can also be used to observe systems that are invisible (or almost impossible to detect) by any other means. For example, they provide a unique method of measuring the properties of black holes.

Gravitational waves can be emitted by many systems, but, to produce detectable signals, the source must consist of extremely massive objects moving at a significant fraction of the speed of light. The main source is a binary of two compact objects. Example systems include:

In addition to binaries, there are other potential sources:

Gravitational waves interact only weakly with matter. This is what makes them difficult to detect. It also means that they can travel freely through the Universe, and are not absorbed or scattered like electromagnetic radiation. It is therefore possible to see to the center of dense systems, like the cores of supernovae or the Galactic Center. It is also possible to see further back in time than with electromagnetic radiation, as the early universe was opaque to light prior to recombination, but transparent to gravitational waves. [46]

The ability of gravitational waves to move freely through matter also means that gravitational-wave detectors, unlike telescopes, are not pointed to observe a single field of view but observe the entire sky. Detectors are more sensitive in some directions than others, which is one reason why it is beneficial to have a network of detectors. [47] Directionalization is also poor, due to the small number of detectors.

In cosmic inflation

Cosmic inflation, a hypothesized period when the universe rapidly expanded during the first 10−36 seconds after the Big Bang, would have given rise to gravitational waves; that would have left a characteristic imprint in the polarization of the CMB radiation. [48] [49]

It is possible to calculate the properties of the primordial gravitational waves from measurements of the patterns in the microwave radiation, and use those calculations to learn about the early universe. [ how? ]

Development

The LIGO Hanford Control Room LIGO control.jpg
The LIGO Hanford Control Room

As a young area of research, gravitational-wave astronomy is still in development; however, there is consensus within the astrophysics community that this field will evolve to become an established component of 21st century multi-messenger astronomy. [50]

Gravitational-wave observations complement observations in the electromagnetic spectrum. [51] [50] These waves also promise to yield information in ways not possible via detection and analysis of electromagnetic waves. Electromagnetic waves can be absorbed and re-radiated in ways that make extracting information about the source difficult. Gravitational waves, however, only interact weakly with matter, meaning that they are not scattered or absorbed. This should allow astronomers to view the center of a supernova, stellar nebulae, and even colliding galactic cores in new ways.

Ground-based detectors have yielded new information about the inspiral phase and mergers of binary systems of two stellar mass black holes, and merger of two neutron stars. They could also detect signals from core-collapse supernovae, and from periodic sources such as pulsars with small deformations. If there is truth to speculation about certain kinds of phase transitions or kink bursts from long cosmic strings in the very early universe (at cosmic times around 10−25 seconds), these could also be detectable. [52] Space-based detectors like LISA should detect objects such as binaries consisting of two white dwarfs, and AM CVn stars (a white dwarf accreting matter from its binary partner, a low-mass helium star), and also observe the mergers of supermassive black holes and the inspiral of smaller objects (between one and a thousand solar masses) into such black holes. LISA should also be able to listen to the same kind of sources from the early universe as ground-based detectors, but at even lower frequencies and with greatly increased sensitivity. [53]

Detecting emitted gravitational waves is a difficult endeavor. It involves ultra-stable high-quality lasers and detectors calibrated with a sensitivity of at least 2·10−22 Hz−1/2 as shown at the ground-based detector, GEO600. [54] It has also been proposed that even from large astronomical events, such as supernova explosions, these waves are likely to degrade to vibrations as small as an atomic diameter. [55]

Pinpointing the location of where the gravitational waves comes from is also a challenge. But deflected waves through gravitational lensing combined with machine learning could make it easier and more accurate. [56] Just as the light from the SN Refsdal supernova was detected a second time almost a year after it was first discovered, due to gravitational lensing sending some of the light on a different path through the universe, the same approach could be used for gravitational waves. [57] While still at an early stage, a technique similar to the triangulation used by cell phones to determine their location in relation to GPS satellites, will help astronomers tracking down the origin of the waves. [58]

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

<span class="mw-page-title-main">Timeline of gravitational physics and relativity</span>

The following is a timeline of gravitational physics and general relativity.

<span class="mw-page-title-main">LIGO</span> Gravitational wave observatory site

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart to measure changes in length—over an effective span of 1120 km—of less than one ten-thousandth the charge diameter of a proton.

<span class="mw-page-title-main">Laser Interferometer Space Antenna</span> European space mission to measure gravitational waves

The Laser Interferometer Space Antenna (LISA) is a planned space probe to detect and accurately measure gravitational waves—tiny ripples in the fabric of spacetime—from astronomical sources. LISA will be the first dedicated space-based gravitational-wave observatory. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept features three spacecraft arranged in an equilateral triangle with each side 2.5 million kilometers long, flying in an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.

<span class="mw-page-title-main">Pulsar</span> Rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">Millisecond pulsar</span> Pulsar with a rotational period less than about 10 milliseconds

A millisecond pulsar (MSP) is a pulsar with a rotational period less than about 10 milliseconds. Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading hypothesis for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system. For this reason, millisecond pulsars are sometimes called recycled pulsars.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory.

<span class="mw-page-title-main">Gravitational wave background</span> Random background of gravitational waves permeating the Universe

The gravitational wave background is a random background of gravitational waves permeating the Universe, which is detectable by gravitational-wave experiments, like pulsar timing arrays. The signal may be intrinsically random, like from stochastic processes in the early Universe, or may be produced by an incoherent superposition of a large number of weak independent unresolved gravitational-wave sources, like supermassive black-hole binaries. Detecting the gravitational wave background can provide information that is inaccessible by any other means about astrophysical source population, like hypothetical ancient supermassive black-hole binaries, and early Universe processes, like hypothetical primordial inflation and cosmic strings.

<span class="mw-page-title-main">Gravitational wave</span> Aspect of relativity in physics

Gravitational waves are transient displacements in a gravitational field – generated by the motion or acceleration of gravitating masses – that radiate outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. In 1916, Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime.

<span class="mw-page-title-main">Gravitational-wave observatory</span> Device used to measure gravitational waves

A gravitational-wave detector is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built and constantly improved. The present-day generation of laser interferometers has reached the necessary sensitivity to detect gravitational waves from astronomical sources, thus forming the primary tool of gravitational-wave astronomy.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

A pulsar timing array (PTA) is a set of galactic pulsars that is monitored and analyzed to search for correlated signatures in the pulse arrival times on Earth. As such, they are galactic-sized detectors. Although there are many applications for pulsar timing arrays, the best known is the use of an array of millisecond pulsars to detect and analyse long-wavelength gravitational wave background. Such a detection would entail a detailed measurement of a gravitational wave (GW) signature, like the GW-induced quadrupolar correlation between arrival times of pulses emitted by different millisecond pulsar pairings that depends only on the pairings' angular separations in the sky. Larger arrays may be better for GW detection because the quadrupolar spatial correlations induced by GWs can be better sampled by many more pulsar pairings. With such a GW detection, millisecond pulsar timing arrays would open a new low-frequency window in gravitational-wave astronomy to peer into potential ancient astrophysical sources and early Universe processes, inaccessible by any other means.

The International Pulsar Timing Array (IPTA) is a multi-institutional, multi-telescope collaboration comprising the European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA) in Australia, and the Indian Pulsar Timing Array Project (InPTA). The goal of the IPTA is to detect ultra-low-frequency gravitational waves, such as from mergers of supermassive black holes, using an array of approximately 30 pulsars. This goal is shared by each of the participating institutions, but they have all recognized that their goal will be achieved more quickly by combining their respective efforts and resources.

<span class="mw-page-title-main">Binary black hole</span> System consisting of two black holes in close orbit around each other

A binary black hole (BBH), or black hole binary, is a system consisting of two black holes in close orbit around each other. Like black holes themselves, binary black holes are often divided into binary stellar black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture; and binary supermassive black holes, believed to be a result of galactic mergers.

<span class="mw-page-title-main">Extreme mass ratio inspiral</span>

In astrophysics, an extreme mass ratio inspiral (EMRI) is the orbit of a relatively light object around a much heavier object, that gradually spirals in due to the emission of gravitational waves. Such systems are likely to be found in the centers of galaxies, where stellar mass compact objects, such as stellar black holes and neutron stars, may be found orbiting a supermassive black hole. In the case of a black hole in orbit around another black hole this is an extreme mass ratio binary black hole. The term EMRI is sometimes used as a shorthand to denote the emitted gravitational waveform as well as the orbit itself.

<span class="mw-page-title-main">First observation of gravitational waves</span> Detection made by LIGO and Virgo interferometers (2015)

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993, about 140 million light years away. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It was the first GW observation to be confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

<span class="mw-page-title-main">Chiara Mingarelli</span> Italian-Canadian astrophysicist

Chiara Mingarelli is an Italian-Canadian astrophysicist who researches gravitational waves. She is an assistant professor of physics at Yale University since 2023, and previously an assistant professor at the University of Connecticut (2020–2023). She is also a science writer and communicator.

Ground-based interferometric gravitational-wave search refers to the use of extremely large interferometers built on the ground to passively detect gravitational wave events from throughout the cosmos. Most recorded gravitational wave observations have been made using this technique; the first detection, revealing the merger of two black holes, was made in 2015 by the LIGO sites.

References

  1. Patrick R. Brady; Jolien D.E. Creighton (2003), "Gravitational Wave Astronomy", Encyclopedia of Physical Science and Technology (3rd ed.), Academic Press, pp. 33–48
  2. Rabinarayan Swain; Priyasmita Panda; Hena Priti Lima; Bijayalaxmi Kuanar; Biswajit Dalai (January–February 2022), "Gravitational waves: A review on the future astronomy", International Journal of Multidisciplinary Research and Growth Evaluation, 3 (1): 38–50
  3. Rothman, Tony (March 2018). "The Secret History of Gravitational Waves - Contrary to popular belief, Einstein was not the first to conceive of gravitational waves—but he was, eventually, the first to get the concept right". American Scientist . Archived from the original on 20 March 2024. Retrieved 20 March 2024.
  4. Moore, Christopher; Cole, Robert; Berry, Christopher (19 July 2013). "Gravitational Wave Detectors and Sources" . Retrieved 17 April 2014.
  5. Overbye, Dennis (11 February 2016). "Physicists Detect Gravitational Waves, Proving Einstein Right". New York Times . Retrieved 11 February 2016.
  6. Krauss, Lawrence (11 February 2016). "Finding Beauty in the Darkness". New York Times . Retrieved 11 February 2016.
  7. Pretorius, Frans (2005). "Evolution of Binary Black-Hole Spacetimes". Physical Review Letters. 95 (12): 121101. arXiv: gr-qc/0507014 . Bibcode:2005PhRvL..95l1101P. doi:10.1103/PhysRevLett.95.121101. ISSN   0031-9007. PMID   16197061. S2CID   24225193.
  8. Campanelli, M.; Lousto, C. O.; Marronetti, P.; Zlochower, Y. (2006). "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision". Physical Review Letters. 96 (11): 111101. arXiv: gr-qc/0511048 . Bibcode:2006PhRvL..96k1101C. doi:10.1103/PhysRevLett.96.111101. ISSN   0031-9007. PMID   16605808. S2CID   5954627.
  9. Baker, John G.; Centrella, Joan; Choi, Dae-Il; Koppitz, Michael; van Meter, James (2006). "Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes". Physical Review Letters. 96 (11): 111102. arXiv: gr-qc/0511103 . Bibcode:2006PhRvL..96k1102B. doi:10.1103/PhysRevLett.96.111102. ISSN   0031-9007. PMID   16605809. S2CID   23409406.
  10. Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P. (2016-02-11). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv: 1602.03837 . Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. ISSN   0031-9007. PMID   26918975. S2CID   124959784.
  11. Sesana, A. (22 May 2013). "Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band". Monthly Notices of the Royal Astronomical Society: Letters. 433 (1): L1–L5. arXiv: 1211.5375 . Bibcode:2013MNRAS.433L...1S. doi: 10.1093/mnrasl/slt034 . S2CID   11176297.
  12. "IOPscience - Focus on NANOGrav's 15 yr Data Set and the Gravitational Wave Background".
  13. "After 15 years, pulsar timing yields evidence of cosmic gravitational wave background". 29 June 2023.
  14. O'Callaghan, Jonathan (28 June 2023). "An Enormous Gravity 'Hum' Moves Through the Universe". quantamagazine.org. Astronomers have found a background din of exceptionally long-wavelength gravitational waves pervading the cosmos. The cause? Probably supermassive black hole collisions, but more exotic options can't be ruled out.
  15. Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Bécsy, Bence; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina (June 2023). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters. 951 (1): L8. arXiv: 2306.16213 . Bibcode:2023ApJ...951L...8A. doi: 10.3847/2041-8213/acdac6 . ISSN   2041-8205. S2CID   259274684.
  16. Antoniadis, J. (28 June 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics. 678: A50. arXiv: 2306.16214 . doi:10.1051/0004-6361/202346844. S2CID   259274756.
  17. Reardon, Daniel J.; Zic, Andrew; Shannon, Ryan M.; Hobbs, George B.; Bailes, Matthew; Di Marco, Valentina; Kapur, Agastya; Rogers, Axl F.; Thrane, Eric; Askew, Jacob; Bhat, N. D. Ramesh; Cameron, Andrew; Curyło, Małgorzata; Coles, William A.; Dai, Shi (2023-06-29). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L6. arXiv: 2306.16215 . Bibcode:2023ApJ...951L...6R. doi: 10.3847/2041-8213/acdd02 . ISSN   2041-8205. S2CID   259275121.
  18. Xu, Heng; Chen, Siyuan; Guo, Yanjun; Jiang, Jinchen; Wang, Bojun; Xu, Jiangwei; Xue, Zihan; Nicolas Caballero, R.; Yuan, Jianping; Xu, Yonghua; Wang, Jingbo; Hao, Longfei; Luo, Jingtao; Lee, Kejia; Han, Jinlin (2023-06-29). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics. 23 (7): 075024. arXiv: 2306.16216 . Bibcode:2023RAA....23g5024X. doi:10.1088/1674-4527/acdfa5. ISSN   1674-4527. S2CID   259274998.
  19. O'Callaghan, Jonathan (4 August 2023). "A Background 'Hum' Pervades the Universe. Scientists Are Racing to Find Its Source". scientificamerican.com. Retrieved 5 August 2023. Astronomers are now seeking to pinpoint the origins of an exciting new form of gravitational waves that was announced earlier this year.
  20. "ESA's new vision to study the invisible universe". ESA. Retrieved 29 November 2013.
  21. Longair, Malcolm (2012). Cosmic century: a history of astrophysics and cosmology. Cambridge University Press. ISBN   978-1107669369.
  22. Bahcall, John N. (1989). Neutrino Astrophysics (Reprinted. ed.). Cambridge: Cambridge University Press. ISBN   978-0521379755.
  23. Bahcall, John (9 June 2000). "How the Sun Shines". Nobel Prize . Retrieved 10 May 2014.
  24. "The Nobel Prize in Physics 1993". Nobel Foundation. Retrieved 2014-05-03.
  25. Stairs, Ingrid H. (2003). "Testing General Relativity with Pulsar Timing". Living Reviews in Relativity. 6 (1): 5. arXiv: astro-ph/0307536 . Bibcode:2003LRR.....6....5S. doi: 10.12942/lrr-2003-5 . PMC   5253800 . PMID   28163640.
  26. Rincon, Paul; Amos, Jonathan (3 October 2017). "Einstein's waves win Nobel Prize". BBC News . Retrieved 3 October 2017.
  27. Overbye, Dennis (3 October 2017). "2017 Nobel Prize in Physics Awarded to LIGO Black Hole Researchers". The New York Times . Retrieved 3 October 2017.
  28. Kaiser, David (3 October 2017). "Learning from Gravitational Waves". The New York Times . Retrieved 3 October 2017.
  29. Nelemans, Gijs (7 May 2009). "The Galactic gravitational wave foreground". Classical and Quantum Gravity. 26 (9): 094030. arXiv: 0901.1778 . Bibcode:2009CQGra..26i4030N. doi:10.1088/0264-9381/26/9/094030. S2CID   11275836.
  30. Stroeer, A; Vecchio, A (7 October 2006). "The LISA verification binaries". Classical and Quantum Gravity. 23 (19): S809–S817. arXiv: astro-ph/0605227 . Bibcode:2006CQGra..23S.809S. doi:10.1088/0264-9381/23/19/S19. S2CID   9338900.
  31. Abadie, J.; et al. (7 September 2010). "Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors". Classical and Quantum Gravity. 27 (17): 173001. arXiv: 1003.2480 . Bibcode:2010CQGra..27q3001A. doi:10.1088/0264-9381/27/17/173001. S2CID   15200690.
  32. "Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors". Gravitational Physics Group. University of Birmingham. Retrieved 28 November 2015.
  33. "Observing the invisible collisions of intermediate mass black holes". LIGO Scientific Collaboration. Retrieved 28 November 2015.
  34. Volonteri, Marta; Haardt, Francesco; Madau, Piero (10 January 2003). "The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation". The Astrophysical Journal. 582 (2): 559–573. arXiv: astro-ph/0207276 . Bibcode:2003ApJ...582..559V. doi:10.1086/344675. S2CID   2384554.
  35. Sesana, A.; Vecchio, A.; Colacino, C. N. (11 October 2008). "The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays". Monthly Notices of the Royal Astronomical Society. 390 (1): 192–209. arXiv: 0804.4476 . Bibcode:2008MNRAS.390..192S. doi: 10.1111/j.1365-2966.2008.13682.x . S2CID   18929126.
  36. 1 2 Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (21 June 2012). "Low-frequency gravitational-wave science with eLISA/NGO". Classical and Quantum Gravity. 29 (12): 124016. arXiv: 1202.0839 . Bibcode:2012CQGra..29l4016A. doi:10.1088/0264-9381/29/12/124016. S2CID   54822413.
  37. Amaro-Seoane, P. (May 2012). "Stellar dynamics and extreme-mass ratio inspirals". Living Reviews in Relativity. 21 (1): 4. arXiv: 1205.5240 . Bibcode:2018LRR....21....4A. doi:10.1007/s41114-018-0013-8. PMC   5954169 . PMID   29780279.
  38. Berry, C. P. L.; Gair, J. R. (12 December 2012). "Observing the Galaxy's massive black hole with gravitational wave bursts". Monthly Notices of the Royal Astronomical Society. 429 (1): 589–612. arXiv: 1210.2778 . Bibcode:2013MNRAS.429..589B. doi: 10.1093/mnras/sts360 . S2CID   118944979.
  39. Amaro-Seoane, Pau; Gair, Jonathan R; Freitag, Marc; Miller, M Coleman; Mandel, Ilya; Cutler, Curt J; Babak, Stanislav (7 September 2007). "Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA". Classical and Quantum Gravity. 24 (17): R113–R169. arXiv: astro-ph/0703495 . Bibcode:2007CQGra..24R.113A. doi:10.1088/0264-9381/24/17/R01. S2CID   37683679.
  40. Gair, Jonathan; Vallisneri, Michele; Larson, Shane L.; Baker, John G. (2013). "Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors". Living Reviews in Relativity. 16 (1): 7. arXiv: 1212.5575 . Bibcode:2013LRR....16....7G. doi: 10.12942/lrr-2013-7 . PMC   5255528 . PMID   28163624.
  41. Kotake, Kei; Sato, Katsuhiko; Takahashi, Keitaro (1 April 2006). "Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae". Reports on Progress in Physics. 69 (4): 971–1143. arXiv: astro-ph/0509456 . Bibcode:2006RPPh...69..971K. doi:10.1088/0034-4885/69/4/R03. S2CID   119103628.
  42. Abbott, B.; et al. (2007). "Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run". Physical Review D. 76 (8): 082001. arXiv: gr-qc/0605028 . Bibcode:2007PhRvD..76h2001A. doi:10.1103/PhysRevD.76.082001. S2CID   209843313.
  43. "Searching for the youngest neutron stars in the galaxy". LIGO Scientific Collaboration. Retrieved 28 November 2015.
  44. Binétruy, Pierre; Bohé, Alejandro; Caprini, Chiara; Dufaux, Jean-François (13 June 2012). "Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources". Journal of Cosmology and Astroparticle Physics. 2012 (6): 027. arXiv: 1201.0983 . Bibcode:2012JCAP...06..027B. doi:10.1088/1475-7516/2012/06/027. S2CID   119184947.
  45. Damour, Thibault; Vilenkin, Alexander (2005). "Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows". Physical Review D. 71 (6): 063510. arXiv: hep-th/0410222 . Bibcode:2005PhRvD..71f3510D. doi:10.1103/PhysRevD.71.063510. S2CID   119020643.
  46. Mack, Katie (2017-06-12). "Black Holes, Cosmic Collisions and the Rippling of Spacetime". Scientific American (blogs).
  47. Schutz, Bernard F (21 June 2011). "Networks of gravitational wave detectors and three figures of merit". Classical and Quantum Gravity. 28 (12): 125023. arXiv: 1102.5421 . Bibcode:2011CQGra..28l5023S. doi:10.1088/0264-9381/28/12/125023. S2CID   119247573.
  48. Hu, Wayne; White, Martin (1997). "A CMB polarization primer". New Astronomy. 2 (4): 323–344. arXiv: astro-ph/9706147 . Bibcode:1997NewA....2..323H. doi:10.1016/S1384-1076(97)00022-5. S2CID   11977065.
  49. Kamionkowski, Marc; Stebbins, Albert; Stebbins, Albert (1997). "Statistics of cosmic microwave background polarization". Physical Review D. 55 (12): 7368–7388. arXiv: astro-ph/9611125 . Bibcode:1997PhRvD..55.7368K. doi:10.1103/PhysRevD.55.7368. S2CID   14018215.
  50. 1 2 "PLANNING FOR A BRIGHT TOMORROW: PROSPECTS FOR GRAVITATIONAL-WAVE ASTRONOMY WITH ADVANCED LIGO AND ADVANCED VIRGO". LIGO Scientific Collaboration . Retrieved 31 December 2015.
  51. Price, Larry (September 2015). "Looking for the Afterglow: The LIGO Perspective" (PDF). LIGO Magazine (7): 10. Retrieved 28 November 2015.
  52. See Cutler & Thorne 2002 , sec. 2.
  53. See Cutler & Thorne 2002 , sec. 3.
  54. See Seifert F., et al. 2006 , sec. 5.
  55. See Golm & Potsdam 2013 , sec. 4.
  56. With Einstein on crooked paths
  57. We are about to hear echoes in the fabric of space for the first time
  58. Gravitational Lenses Could Pin Down Black Hole Mergers with Unprecedented Accuracy

Further reading