David Kaiser | |
---|---|
Citizenship | American |
Alma mater | Dartmouth College (A.B. 1993) Harvard University (Ph.D 1997, 2000) |
Scientific career | |
Fields | Physics History of science |
Institutions | Massachusetts Institute of Technology |
Website | http://web.mit.edu/dikaiser/www/ |
David I. Kaiser is an American physicist and historian of science. He is Germeshausen Professor of the History of Science at the Massachusetts Institute of Technology (MIT) and a full professor in MIT's department of physics. He also served as an inaugural associate dean for MIT's cross-disciplinary program in Social and Ethical Responsibilities of Computing. [1]
Kaiser is the author or editor of several books on the history of science, including Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics (2005), How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival (2011), [2] and Quantum Legacies: Dispatches from an Uncertain World (2020). [3] He received the Apker Award [4] from the American Physical Society in 1993 and was elected a Fellow of the American Physical Society in 2010. His historical scholarship has been honored with the Pfizer Award (2007) [5] and the Davis Prize (2013) [6] from the History of Science Society. In March 2012 he was awarded the MacVicar fellowship, a prestigious MIT undergraduate teaching award. [7] In 2012, he also received the Frank E. Perkins Award from MIT for excellence in mentoring graduate students. [8]
Kaiser completed his AB in physics at Dartmouth College in 1993. He completed two PhDs from Harvard University. The first was in physics in 1997 for a thesis entitled "Post-Inflation Reheating in an Expanding Universe," the second in the history of science in 2000 for a thesis on "Making Theory: Producing Physics and Physicists in Postwar America." [1]
Kaiser's physics research mostly focuses on early-universe cosmology, including topics such as cosmic inflation, [9] [10] post-inflation reheating, [11] [12] [13] and primordial black holes. [14] [15] [16] He has also helped to design and conduct novel experimental tests of quantum theory, including the "Cosmic Bell" experiments [17] [18] [19] that Kaiser worked on with Nobel laureate Anton Zeilinger, [20] and which were featured in the PBS Nova documentary film Einstein's Quantum Riddle (2019). [21]
Kaiser's historical research focuses on intersections among modern natural sciences, geopolitics, and the history of higher education during the Cold War. His MIT course on "Einstein, Oppenheimer, Feynman: Physics in the Twentieth Century" is available via MIT OpenCourseWare.
In addition to his scholarly writing, Kaiser's work has appeared in The New York Times , [22] [23] [24] [25] the New Yorker magazine, [26] [27] [28] and in several PBS Nova television programs. [29] He also serves as Chair of the Editorial Board of the MIT Press and as Editor of the MIT Case Studies Series on Social and Ethical Responsibilities of Computing.
In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.
The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "flat universes", "other universes", "alternate universes", "multiple universes", "plane universes", "parent and child universes", "many universes", or "many worlds". One common assumption is that the multiverse is a "patchwork quilt of separate universes all bound by the same laws of physics."
The following is a timeline of gravitational physics and general relativity.
The ekpyrotic universe is a cosmological model of the early universe that explains the origin of the large-scale structure of the cosmos. The model has also been incorporated in the cyclic universe theory, which proposes a complete cosmological history, both the past and future.
Rainer "Rai" Weiss is a German-born American physicist, known for his contributions in gravitational physics and astrophysics. He is a professor of physics emeritus at MIT and an adjunct professor at LSU. He is best known for inventing the laser interferometric technique which is the basic operation of LIGO. He was Chair of the COBE Science Working Group.
The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the cyclic model or oscillatory universe interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe.
Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. The test empirically evaluates the implications of Bell's theorem. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.
In quantum field theory, a false vacuum is a hypothetical vacuum state that is locally stable but does not occupy the most stable possible ground state. In this condition it is called metastable. It may last for a very long time in this state, but could eventually decay to the more stable one, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.
Paul Joseph Steinhardt is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences.
Alexander Vilenkin is the Leonard Jane Holmes Bernstein Professor of Evolutionary Science and Director of the Institute of Cosmology at Tufts University. A theoretical physicist who has been working in the field of cosmology for 25 years, Vilenkin has written over 260 publications.
Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.
In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.
David Tong is a British theoretical physicist. He is a professor at the University of Cambridge, working in the Department of Applied Mathematics and Theoretical Physics (DAMTP). He is also a fellow of Trinity College, Cambridge. His research mainly concerns quantum field theory. He is the joint recipient of the 2008 Adams Prize and is currently a Simons Investigator. He is also known for his outreach activities and for his freely available lecture notes covering a wide range of topics in physics.
In physical cosmology, warm inflation is one of two dynamical realizations of cosmological inflation. The other is the standard scenario, sometimes called cold inflation.
Andreas J. Albrecht is a theoretical physicist and cosmologist who is a professor and chair of the physics department at the University of California, Davis. He is one of the founders of inflationary cosmology and studies the formation of the early universe, cosmic structure, and dark energy.
Edward Henry Farhi is a physicist working on quantum computation as a principal scientist at Google. In 2018 he retired from his position as the Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology. He was the director of the Center for Theoretical Physics at MIT from 2004 until 2016. He made contributions to particle physics, general relativity and astroparticle physics before turning to his current interest, quantum computation.
Katelin Schutz is an American particle physicist known for using cosmological observations to study dark sectors, that is new particles and forces that interact weakly with the visible world. She was a NASA Einstein Fellow and Pappalardo Fellow in the MIT Department of Physics and is currently an assistant professor of physics at McGill University.
The Buchalter Cosmology Prize, established in 2014, is a prestigious annual prize bestowed by Dr. Ari Buchalter.
Raphael Flauger is a German theoretical physicist and cosmologist.