Atom interferometer

Last updated

An atom interferometer uses the wave-like nature of atoms in order to produce interference. In atom interferometers, the roles of matter and light are reversed compared to the laser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emits matter waves (the atoms) rather than light. In this sense, atom interferometers are the matter wave analog of double-slit, Michelson-Morley, or Mach-Zehnder interferometers typically used for light. [1] Atom interferometers measure the difference in phase acquired by atomic matter waves traversing different paths. Matter waves may be controlled and manipulated using systems of lasers. [2] :420–1 Atom interferometers have been used in tests of fundamental physics, including measurements of the gravitational constant, the fine-structure constant, and universality of free fall. Applied uses of atom interferometers include accelerometers, rotation sensors, and gravity gradiometers. [3]

Contents

Overview

Interferometry splits a wave into a superposition along two different paths. A spatially dependent potential or a local interaction differentiates the paths, introducing a phase difference between waves. Atom interferometers use center of mass matter waves with short de Broglie wavelength. [4] [5] Experiments using molecules have been proposed to search for the limits of quantum mechanics by leveraging the molecules' shorter De Broglie wavelengths. [6]

History

Interference of atom matter waves was first observed by Immanuel Estermann and Otto Stern in 1930, when a sodium (Na) beam was diffracted off a surface of sodium chloride (NaCl). [7] The first modern atom interferometer reported was a double-slit experiment with metastable helium atoms and a microfabricated double slit by O. Carnal and Jürgen Mlynek in 1991, [8] and an interferometer using three microfabricated diffraction gratings and Na atoms in the group around David E. Pritchard at the Massachusetts Institute of Technology (MIT). [9] Shortly afterwards, an optical version of a Ramsey spectrometer typically used in atomic clocks was recognized also as an atom interferometer at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. [10] The largest physical separation between the partial wave packets of atoms was achieved using laser cooling techniques and stimulated Raman transitions by Steven Chu and his coworkers in Stanford University. [11]

In 1999, the diffraction of C60 fullerenes by researchers from the University of Vienna was reported. [12] Fullerenes are comparatively large and massive objects, having an atomic mass of about 720  Da . The de Broglie wavelength of the incident beam was about 2.5  pm, whereas the diameter of the molecule is about 1  nm, about 400 times larger. In 2012, these far-field diffraction experiments could be extended to phthalocyanine molecules and their heavier derivatives, which are composed of 58 and 114 atoms respectively. In these experiments the build-up of such interference patterns could be recorded in real time and with single molecule sensitivity. [13]

In 2003, the Vienna group also demonstrated the wave nature of tetraphenylporphyrin [14] —a flat biodye with an extension of about 2 nm and a mass of 614 Da. For this demonstration they employed a near-field Talbot–Lau interferometer. [15] [16] In the same interferometer they also found interference fringes for C60F48, a fluorinated buckyball with a mass of about 1600 Da, composed of 108 atoms. [14] Large molecules are already so complex that they give experimental access to some aspects of the quantum-classical interface, i.e., to certain decoherence mechanisms. [17] [18] In 2011, the interference of molecules as heavy as 6910 Da could be demonstrated in a Kapitza–Dirac–Talbot–Lau interferometer. [19] In 2013, the interference of molecules beyond 10,000 Da has been demonstrated. [20]

The 2008 comprehensive review by Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard documents many new experimental approaches to atom interferometry. [21] More recently atom interferometers have begun moving out of laboratory conditions and have begun to address a variety of applications in real world environments. [22] [23]

Interferometer types

A compact Magneto-optical Trap, the first step in generating an atom interferometer. Atom interferometer.jpg
A compact Magneto-optical Trap, the first step in generating an atom interferometer.

While the use of atoms offers easy access to higher frequencies (and thus accuracies) than light, atoms possess mass and move slower; thus they affected more noticeably by gravity compared to beams of light [24] . In some apparatuses, the atoms are ejected upwards and the interferometry takes place while the atoms are in flight, or while falling in free flight. [25] In other experiments gravitational effects by free acceleration are not negated; additional forces are used to compensate for gravity. [26] [27] These guided systems in principle can provide arbitrary amounts of measurement time, provided quantum coherence is preserved.

The early atom interferometers deployed slits or wires for the beam splitters and mirrors. Later systems, especially the guided ones, used light forces for splitting and reflecting of the matter wave. [28]

Light pulse atom interferometer

A prototypical technique for atom interferometry involves splitting, reflecting, and recombining atomic matter waves using pulses of light. This technique is also called the Kasevich-Chu atom interferometer, named after the authors of the 1991 paper. [29] This method employs counter-propagating beams of light that produce transitions between two quantum states labeled and . [30] Both lasers are tuned off-resonance from the excited state by a frequency Δ to avoid resonantly exciting and heating the atoms.

In addition to changing the spin state of the atom, the counter-propagating Raman transition provides a momentum kick to one of the components. [30] In a spin–momentum basis, a pulse of Raman light interacting with an atom will transition between and . Applying a pulse (see Ramsey interferometer) light to produces the entangled state .

The interferometer is formed by three Raman pulses in a configuration separated by a common non-interaction time . This scheme is analogous to a Mach–Zehnder interferometer for light, where the first pulse splits the matter wave to travel along two different trajectories, the second pulse reflects the packets back toward each other, and the final pulse recombines the matter wave. The measured state of the matter wave after the interferometer sequence depends on the total phase difference accumulated along the two different trajectories, yielding a final probability of being in one of the states as [31] where is the visibility or contrast of the interferometer fringe. Since the matter wave is in free-fall with respect to gravity, the phase difference depends on the gravitational acceleration as [32] where is any additional phase difference of the Raman laser beam arising between the light pulses. [33]


The sensitivity of the interferometer to gravitational or inertial forces depends on:

Examples

GroupYearAtomic speciesMethodMeasured effect(s)
Pritchard 1991 Na, Na2Nano-fabricated gratings Polarizability, index of refraction
Clauser1994 K Talbot–Lau interferometer
Zeilinger1995 Ar Standing light wave diffraction gratings
Helmke
Bordé
1991 Ramsey–Bordé Polarizability,
Aharonov–Bohm effect: exp/theo ,
Sagnac effect 0.3 rad/s/Hz
Chu1991
1998
Na

Cs

Kasevich–Chu interferometer
Light pulses Raman diffraction
Gravimeter:
Fine-structure constant:
Kasevich1997
1998
CsLight pulses Raman diffractionGyroscope: rad/s/Hz,
Gradiometer:
BermanTalbot-Lau
Mueller2018CsRamsey-Bordé interferometer Fine-structure constant:

Applications

Gravitational physics

A precise measurement of gravitational redshift was made in 2009 by Holger Muller, Achim Peters, and Steven Chu. No violations of general relativity were found to 7×10−9. [35]

In 2020, Peter Asenbaum, Chris Overstreet, Minjeong Kim, Joseph Curti, and Mark A. Kasevich used atom interferometry to test the principle of equivalence in general relativity. They found no violations to about 10−12. [36] [37]

The sensitivity of an atom interferometer to external influences generally improves as the mater wave's separation time increases. [35] High sensitivity free-fall interferometers hence require long drop distances. For example, the MAGIS-100 experiment at Fermilab employs a 100 meter drop tower, aiming to detect gravitational waves and ultralight dark matter [38] , which is known to interact with regular matter only via gravity.

Space-based atom interferometers may be more sensitive to weak gravitational waves than terrestrial observatories such as LIGO. [39]

Inertial navigation

Atomic interferometer gyroscopes (AIG) and atomic spin gyroscopes (ASG) use atomic interferometer to sense rotation or in the latter case, uses atomic spin to sense rotation with both having compact size, high precision, and the possibility of being made on a chip-scale. [40] [41]

See also

References

  1. Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009-07-28). "Optics and interferometry with atoms and molecules". Reviews of Modern Physics. 81 (3): 1051–1129. arXiv: 0712.3703 . doi:10.1103/RevModPhys.81.1051.
  2. Hecht, Eugene (2017). Optics (5th ed.). Pearson. ISBN   978-0-133-97722-6.
  3. Stray, Ben; Lamb, Andrew; Kaushik, Aisha; Vovrosh, Jamie; Winch, Jonathan; Hayati, Farzad; Boddice, Daniel; Stabrawa, Artur; Niggebaum, Alexander; Langlois, Mehdi; Lien, Yu-Hung; Lellouch, Samuel; Roshanmanesh, Sanaz; Ridley, Kevin; de Villiers, Geoffrey; Brown, Gareth; Cross, Trevor; Tuckwell, George; Faramarzi, Asaad; Metje, Nicole; Bongs, Kai; Holynski, Michael (2020). "Quantum sensing for gravity cartography". Nature. 602 (7898): 590–594. doi: 10.1038/s41586-021-04315-3 . PMC   8866129 . PMID   35197616.
  4. Cronin, A. D.; Schmiedmayer, J.; Pritchard, D. E. (2009). "Optics and interferometry with atoms and molecules". Rev. Mod. Phys. 81 (3): 1051–1129. arXiv: 0712.3703 . Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. S2CID   28009912.
  5. Adams, C. S.; Sigel, M.; Mlynek, J. (1994). "Atom Optics". Phys. Rep. 240 (3): 143–210. Bibcode:1994PhR...240..143A. doi: 10.1016/0370-1573(94)90066-3 .
  6. Hornberger, K.; et al. (2012). "Colloquium: Quantum interference of clusters and molecules". Rev. Mod. Phys. 84 (1): 157. arXiv: 1109.5937 . Bibcode:2012RvMP...84..157H. doi:10.1103/revmodphys.84.157. S2CID   55687641.
  7. Estermann, I.; Stern, Otto (1930). "Beugung von Molekularstrahlen". Z. Phys. 61 (1–2): 95. Bibcode:1930ZPhy...61...95E. doi:10.1007/bf01340293. S2CID   121757478.
  8. Carnal, O.; Mlynek, J. (1991). "Young's double-slit experiment with atoms: A simple atom interferometer". Phys. Rev. Lett. 66 (21): 2689–2692. Bibcode:1991PhRvL..66.2689C. doi:10.1103/physrevlett.66.2689. PMID   10043591.
  9. Keith, D.W.; Ekstrom, C.R.; Turchette, Q.A.; Pritchard, D.E. (1991). "An interferometer for atoms". Phys. Rev. Lett. 66 (21): 2693–2696. Bibcode:1991PhRvL..66.2693K. doi:10.1103/physrevlett.66.2693. PMID   10043592. S2CID   6559338.
  10. Riehle, F.; Th; Witte, A.; Helmcke, J.; Ch; Bordé, J. (1991). "Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer". Phys. Rev. Lett. 67 (2): 177–180. Bibcode:1991PhRvL..67..177R. doi:10.1103/physrevlett.67.177. PMID   10044514.
  11. Kasevich, M.; Chu, S. (1991). "Atomic interferometry using stimulated Raman transitions". Phys. Rev. Lett. 67 (2): 181–184. Bibcode:1991PhRvL..67..181K. doi:10.1103/physrevlett.67.181. PMID   10044515. S2CID   30845889.
  12. Arndt, Markus; O. Nairz; J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger (14 October 1999). "Wave–particle duality of C60". Nature. 401 (6754): 680–682. Bibcode:1999Natur.401..680A. doi:10.1038/44348. PMID   18494170. S2CID   4424892.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Juffmann, Thomas; et al. (25 March 2012). "Real-time single-molecule imaging of quantum interference". Nature Nanotechnology. 7 (5): 297–300. arXiv: 1402.1867 . Bibcode:2012NatNa...7..297J. doi:10.1038/nnano.2012.34. PMID   22447163. S2CID   5918772.
  14. 1 2 Hackermüller, Lucia; Stefan Uttenthaler; Klaus Hornberger; Elisabeth Reiger; Björn Brezger; Anton Zeilinger; Markus Arndt (2003). "The wave nature of biomolecules and fluorofullerenes". Phys. Rev. Lett. 91 (9): 090408. arXiv: quant-ph/0309016 . Bibcode:2003PhRvL..91i0408H. doi:10.1103/PhysRevLett.91.090408. PMID   14525169. S2CID   13533517.
  15. Clauser, John F.; S. Li (1994). "Talbot von Lau interefometry with cold slow potassium atoms". Phys. Rev. A. 49 (4): R2213–2217. Bibcode:1994PhRvA..49.2213C. doi:10.1103/PhysRevA.49.R2213. PMID   9910609.
  16. Brezger, Björn; Lucia Hackermüller; Stefan Uttenthaler; Julia Petschinka; Markus Arndt; Anton Zeilinger (2002). "Matter-wave interferometer for large molecules". Phys. Rev. Lett. 88 (10): 100404. arXiv: quant-ph/0202158 . Bibcode:2002PhRvL..88j0404B. doi:10.1103/PhysRevLett.88.100404. PMID   11909334. S2CID   19793304.
  17. Hornberger, Klaus; Stefan Uttenthaler; Björn Brezger; Lucia Hackermüller; Markus Arndt; Anton Zeilinger (2003). "Observation of Collisional Decoherence in Interferometry". Phys. Rev. Lett. 90 (16): 160401. arXiv: quant-ph/0303093 . Bibcode:2003PhRvL..90p0401H. doi:10.1103/PhysRevLett.90.160401. PMID   12731960. S2CID   31057272.
  18. Hackermüller, Lucia; Klaus Hornberger; Björn Brezger; Anton Zeilinger; Markus Arndt (2004). "Decoherence of matter waves by thermal emission of radiation". Nature. 427 (6976): 711–714. arXiv: quant-ph/0402146 . Bibcode:2004Natur.427..711H. doi:10.1038/nature02276. PMID   14973478. S2CID   3482856.
  19. Gerlich, Stefan; et al. (2011). "Quantum interference of large organic molecules". Nature Communications . 2 (263): 263. Bibcode:2011NatCo...2..263G. doi:10.1038/ncomms1263. PMC   3104521 . PMID   21468015.
  20. Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. (2013). "Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu". Physical Chemistry Chemical Physics. 15 (35): 14696–14700. arXiv: 1310.8343 . Bibcode:2013PCCP...1514696E. doi:10.1039/c3cp51500a. PMID   23900710. S2CID   3944699.
  21. Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009). "Optics and interferometry with atoms and molecules". Reviews of Modern Physics. 81 (3): 1051–1129. arXiv: 0712.3703 . Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. S2CID   28009912.
  22. Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. (2019). "Taking atom interferometric quantum sensors from the laboratory to real-world applications". Nat. Rev. Phys. 1 (12): 731–739. Bibcode:2019NatRP...1..731B. doi:10.1038/s42254-019-0117-4. S2CID   209940190.
  23. Vovrosh, J.; Dragomir, A.; Stray, B.; Boddice, B. (2023). "Advances in Portable Atom Interferometry-Based Gravity Sensing". Sensors. 23 (7): 7651. Bibcode:2023Senso..23.7651V. doi: 10.3390/s23177651 . PMC   10490657 . PMID   37688106.
  24. Lindley, David (2005-07-12). "The Weight of Light". Physics. 16: 1. doi:10.1103/PhysRevLett.4.337.
  25. Peters, Achim; Chung, Keng Yeow; Chu, Steven (August 1999). "Measurement of gravitational acceleration by dropping atoms" . Nature. 400 (6747): 849–852. doi:10.1038/23655. ISSN   1476-4687.
  26. Wu, Saijun; Su, Edward; Prentiss, Mara (2007-10-25). "Demonstration of an Area-Enclosing Guided-Atom Interferometer for Rotation Sensing". Physical Review Letters. 99 (17): 173201. arXiv: physics/0608083 . doi:10.1103/PhysRevLett.99.173201.
  27. McDonald, G. D.; Keal, H.; Altin, P. A.; Debs, J. E.; Bennetts, S.; Kuhn, C. C. N.; Hardman, K. S.; Johnsson, M. T.; Close, J. D.; Robins, N. P. (2013-01-28). "Optically guided linear Mach-Zehnder atom interferometer". Physical Review A. 87 (1): 013632. arXiv: 1212.4635 . doi:10.1103/PhysRevA.87.013632.
  28. Rasel, E. M.; et al. (1995). "Atom Wave Interferometry with Diffraction Gratings of Light" . Phys. Rev. Lett. 75 (14): 2633–2637. Bibcode:1995PhRvL..75.2633R. doi:10.1103/physrevlett.75.2633. PMID   10059366.
  29. Kasevich, Mark; Chu, Steven (1991-07-08). "Atomic interferometry using stimulated Raman transitions". Physical Review Letters. 67 (2): 181–184. doi:10.1103/PhysRevLett.67.181.
  30. 1 2 Sorrentino, F.; Angelis, M. de; Bertoldi, A.; Cacciapuoti, L.; Giorgini, A.; Prevedelli, M.; Rosi, G.; Tino, G. M. (2009). "Precision measurements of gravity using cold atom sensors". Journal of the European Optical Society-Rapid Publications. 4: 09025. doi:10.2971/jeos.2009.09025. ISSN   1990-2573.
  31. "Optica Publishing Group". opg.optica.org. Retrieved 2025-08-28.
  32. Sorrentino, F.; Angelis, M. de; Bertoldi, A.; Cacciapuoti, L.; Giorgini, A.; Prevedelli, M.; Rosi, G.; Tino, G. M. (2009). "Precision measurements of gravity using cold atom sensors". Journal of the European Optical Society-Rapid Publications. 4: 09025. doi:10.2971/jeos.2009.09025. ISSN   1990-2573.
  33. HosseiniArani, Alireza; Schilling, Manuel; Beaufils, Quentin; Knabe, Annike; Tennstedt, Benjamin; Kupriyanov, Alexey; Schön, Steffen; Pereira dos Santos, Franck; Müller, Jürgen (2024-10-01). "Advances in Atom Interferometry and their Impacts on the Performance of Quantum Accelerometers On-board Future Satellite Gravity Missions". Advances in Space Research. 74 (7): 3186–3200. doi:10.1016/j.asr.2024.06.055. ISSN   0273-1177.
  34. Arndt, Markus (2013-02-25). "Free-Falling Interferometry". Physics. 6: 23. doi:10.1103/PhysRevLett.110.093602.
  35. 1 2 Muller, Holger; Peters, Achim; Chu, Steven (2010). "A precision measurement of the gravitational redshift by the interference of matter waves" . Nature. 463 (7283): 926–929. Bibcode:2010Natur.463..926M. doi:10.1038/nature08776. PMID   20164925. S2CID   4317164.
  36. Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters. 125 (19): 191101. arXiv: 2005.11624 . doi:10.1103/PhysRevLett.125.191101. PMID   33216577. S2CID   218869931.
  37. Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
  38. "Outline". MAGIS-100. Retrieved 2025-08-07.
  39. Andersen, Ross D. (2013-10-01). "Gravitational Wave Detectors Get Ready to Hunt for the Big Bang". Scientific American. Retrieved 2025-08-21.
  40. Fang, Jiancheng; Qin, Jie (2012). "Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications". Sensors. 12 (5): 6331–6346. Bibcode:2012Senso..12.6331F. doi: 10.3390/s120506331 . PMC   3386743 . PMID   22778644.
  41. Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications. Full PDF