Chirp mass

Last updated

In astrophysics, the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves. Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal emitted during a binary's inspiral phase. In gravitational wave data analysis, it is easier to measure the chirp mass than the two component masses alone.

Contents

Definition from component masses

A two-body system with component masses and has a chirp mass of

[1] [2] [3]

The chirp mass may also be expressed in terms of the total mass of the system and other common mass parameters:

Orbital evolution

In general relativity, the phase evolution of a binary orbit can be computed using a post-Newtonian expansion, a perturbative expansion in powers of the orbital velocity . The first order gravitational wave frequency, , evolution is described by the differential equation

, [1]

where and are the speed of light and Newton's gravitational constant, respectively.

If one is able to measure both the frequency and frequency derivative of a gravitational wave signal, the chirp mass can be determined. [4] [5] [note 1]

 

 

 

 

(1)

To disentangle the individual component masses in the system one must additionally measure higher order terms in the post-Newtonian expansion. [1]

Mass-redshift degeneracy

One limitation of the chirp mass is that it is affected by redshift; what is actually derived from the observed gravitational waveform is the product

where is the redshift. [7] [8] This redshifted chirp mass is larger [note 2] than the source chirp mass, and can only be converted to a source chirp mass by finding the redshift .

This is usually resolved by using the observed amplitude to find the chirp mass divided by distance, and solving both equations using Hubble's law to compute the relationship between distance and redshift. [note 3]

Xian Chen has pointed out that this assumes non-cosmological redshifts (peculiar velocity and gravitational redshift) are negligible, and questions this assumption. [9] [10] If a binary pair of stellar-mass black holes merge while closely orbiting a supermassive black hole (an extreme mass ratio inspiral), the observed gravitational wave would experience significant gravitational and doppler redshift, leading to a falsely low redshift estimate, and therefore a falsely high mass. He suggests that there are plausible reasons to suspect that the SMBH's accretion disc and tidal forces would enhance the merger rate of black hole binaries near it, and the consequent falsely high mass estimates would explain the unexpectedly large masses of observed black hole mergers. (The question would be best resolved by a lower-frequency gravitational wave detector such as LISA which could observe the EMRI waveform.)

See also

Note

  1. Rewrite equation (1) to obtain the frequency evolution of gravitational waves from a coalescing binary: [6]
    Integrating equation (2) with respect to time gives: [6]
    where C is the constant of integration. Furthermore, on identifying and , the chirp mass can be calculated from the slope of the line fitted through the data points (x, y).
  2. While it is not physically impossible to have , that would require orbiting massive objects which are moving toward the observer, something that is not observed in practice.
  3. Crudely, begin with a guess at the redshift, use that to compute the source chirp mass and source amplitude, divide by the observed amplitude to determine the distance, use Hubble's law to convert the distance to a redshift, and use that as an improved guess to repeat the process until sufficient accuracy is reached.

Related Research Articles

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

In physics, reduced mass is a measure of the effective inertial mass of a system with two or more particles when the particles are interacting with each other. Reduced mass allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass determining the gravitational force is not reduced. In the computation, one mass can be replaced with the reduced mass, if this is compensated by replacing the other mass with the sum of both masses. The reduced mass is frequently denoted by (mu), although the standard gravitational parameter is also denoted by . It has the dimensions of mass, and SI unit kg.

In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and exhibit strange properties such as the oppositely oriented acceleration for an applied force orientation. It is used in certain speculative hypothetical technologies, such as time travel to the past and future, construction of traversable artificial wormholes, which may also allow for time travel, Krasnikov tubes, the Alcubierre drive, and potentially other types of faster-than-light warp drives. Currently, the closest known real representative of such exotic matter is a region of negative pressure density produced by the Casimir effect.

<span class="mw-page-title-main">Laser Interferometer Space Antenna</span> European space mission to measure gravitational waves

The Laser Interferometer Space Antenna (LISA) is a planned space probe to detect and accurately measure gravitational waves—tiny ripples in the fabric of spacetime—from astronomical sources. LISA will be the first dedicated space-based gravitational-wave observatory. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million kilometres long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.

<span class="mw-page-title-main">Cosmic distance ladder</span> Succession of methods by which astronomers determine the distances to celestial objects

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

In celestial mechanics, the Kozai mechanism is a dynamical phenomenon affecting the orbit of a binary system perturbed by a distant third body under certain conditions. It is also known as the von Zeipel-Kozai-Lidov, Lidov–Kozai mechanism, Kozai–Lidov mechanism, or some combination of Kozai, Lidov–Kozai, Kozai–Lidov or von Zeipel-Kozai-Lidov effect, oscillations, cycles, or resonance. This effect causes the orbit's argument of pericenter to oscillate about a constant value, which in turn leads to a periodic exchange between its eccentricity and inclination. The process occurs on timescales much longer than the orbital periods. It can drive an initially near-circular orbit to arbitrarily high eccentricity, and flip an initially moderately inclined orbit between a prograde and a retrograde motion.

Conformal gravity refers to gravity theories that are invariant under conformal transformations in the Riemannian geometry sense; more accurately, they are invariant under Weyl transformations where is the metric tensor and is a function on spacetime.

The Koide formula is an unexplained empirical equation discovered by Yoshio Koide in 1981. In its original form, it is not fully empirical but a set of guesses for a model for masses of quarks and leptons, as well as CKM angles. From this model it survives the observation about the masses of the three charged leptons; later authors have extended the relation to neutrinos, quarks, and other families of particles.

<span class="mw-page-title-main">Gravitational wave</span> Propagating spacetime ripple

Gravitational waves are waves of the intensity of gravity that are generated by the accelerated masses of binary stars and other motions of gravitating masses, and propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. Gravitational waves are sometimes called gravity waves, but gravity waves typically refer to displacement waves in fluids. In 1916 Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime.

<span class="mw-page-title-main">Spin-flip</span> Sudden change of spin axis caused by merging with another black hole

A black hole spin-flip occurs when the spin axis of a rotating black hole undergoes a sudden change in orientation due to absorption of a second (smaller) black hole. Spin-flips are believed to be a consequence of galaxy mergers, when two supermassive black holes form a bound pair at the center of the merged galaxy and coalesce after emitting gravitational waves. Spin-flips are significant astrophysically since a number of physical processes are associated with black hole spins; for instance, jets in active galaxies are believed to be launched parallel to the spin axes of supermassive black holes. A change in the rotation axis of a black hole due to a spin-flip would therefore result in a change in the direction of the jet.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

In astronomy, the binary mass function or simply mass function is a function that constrains the mass of the unseen component in a single-lined spectroscopic binary star or in a planetary system. It can be calculated from observable quantities only, namely the orbital period of the binary system, and the peak radial velocity of the observed star. The velocity of one binary component and the orbital period provide information on the separation and gravitational force between the two components, and hence on the masses of the components.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

References

  1. 1 2 3 Cutler, Curt; Flanagan, Éanna E. (15 March 1994). "Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?". Physical Review D. 49 (6): 2658–2697. arXiv: gr-qc/9402014 . Bibcode:1994PhRvD..49.2658C. doi:10.1103/PhysRevD.49.2658. PMID   10017261. S2CID   5808548.
  2. L. Blanchet; T. Damour; B. R. Iyer; C. M. Will; A. G. Wiseman (1 May 1995). "Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian order". Phys. Rev. Lett. 74 (18): 3515–3518. arXiv: gr-qc/9501027 . Bibcode:1995PhRvL..74.3515B. doi:10.1103/PhysRevLett.74.3515. PMID   10058225. S2CID   14265300.
  3. Blanchet, Luc; Iyerddag, Bala R.; Will, Clifford M.; Wiseman, Alan G. (April 1996). "Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order". Classical and Quantum Gravity. 13 (4): 575–584. arXiv: gr-qc/9602024 . Bibcode:1996CQGra..13..575B. doi:10.1088/0264-9381/13/4/002. S2CID   14677428.
  4. Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Properties of the Binary Black Hole Merger GW150914". Physical Review Letters. 116 (24): 241102. arXiv: 1602.03840 . Bibcode:2016PhRvL.116x1102A. doi:10.1103/PhysRevLett.116.241102. PMID   27367378. S2CID   217406416.
  5. Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2019). "Properties of the binary neutron star merger GW170817". Physical Review X. 9 (1): 011001. arXiv: 1805.11579 . Bibcode:2019PhRvX...9a1001A. doi:10.1103/PhysRevX.9.011001. S2CID   106401868.
  6. 1 2 Tiwari, Vaibhav; Klimenko, Sergei; Necula, Valentin; Mitselmakher, Guenakh (January 2016). "Reconstruction of chirp mass in searches for gravitational wave transients". Classical and Quantum Gravity. 33 (1): 01LT01. arXiv: 1510.02426 . Bibcode:2016CQGra..33aLT01T. doi:10.1088/0264-9381/33/1/01LT01. S2CID   119205575.
  7. Schutz, Bernard F. (25 September 1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl: 11858/00-001M-0000-0013-73C1-2 . S2CID   4327285.
  8. Messenger, Chris; Takami, Kentaro; Gossan, Sarah; Rezzolla, Luciano; Sathyaprakash, B. S. (8 October 2014). "Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers" (PDF). Physical Review X . 4 (4): 041004. arXiv: 1312.1862 . Bibcode:2014PhRvX...4d1004M. doi: 10.1103/PhysRevX.4.041004 .
  9. Chen, Xian; Li, Shuo; Cao, Zhoujian (May 2019). "Mass-redshift degeneracy for the gravitational-wave sources in the vicinity of supermassive black holes". Monthly Notices of the Royal Astronomical Society . 485 (1): L141–L145. arXiv: 1703.10543 . Bibcode:2019MNRAS.485L.141C. doi:10.1093/mnrasl/slz046.
  10. Chen, Xian (2021). "Distortion of Gravitational-Wave Signals by Astrophysical Environments". Handbook of Gravitational Wave Astronomy. pp. 1–22. arXiv: 2009.07626 . doi:10.1007/978-981-15-4702-7_39-1. ISBN   978-981-15-4702-7. S2CID   221739217.