Weber bar

Last updated

A Weber bar is a device used in the detection of gravitational waves first devised and constructed by physicist Joseph Weber at the University of Maryland. The device consisted of aluminium cylinders, 2 meters in length and 1 meter in diameter, antennae for detecting gravitational waves. [1]

Contents

Mechanism

These massive aluminium cylinders vibrated at a resonance frequency of 1660 hertz and were designed to be set in motion by gravitational waves predicted by Weber. Because these waves were supposed to be so weak, the cylinders had to be massive and the piezoelectric sensors had to be very sensitive, capable of detecting a change in the cylinders' lengths by about 10−16 meters. [1]

History

Around 1968, Weber collected what he concluded to be "good evidence" [1] of the theorized phenomenon. However, his experiments were duplicated many times, always with a null result.

Such experiments conducted by Joseph Weber were very controversial, and his positive results with the apparatus, in particular his claim to have detected gravitational waves from SN1987A in 1987, were widely discredited. Criticisms of the study have focused on Weber's data analysis and his incomplete definitions of what strength vibration would signify a passing gravitational wave.

Weber's first "Gravitational Wave Antenna" was on display in the Smithsonian Institution as part of "Einstein: a Centenary Exhibit" from March 1979 to March 1980. [2] A second is on display at the LIGO Hanford Observatory. [3]

The Weber Memorial Garden at the University of Maryland. Weber Memorial Garden.jpg
The Weber Memorial Garden at the University of Maryland.

Weber Memorial Garden was dedicated 2019 at the University of Maryland, where Weber was a faculty member. The garden contains eight of the cores of Weber's bar detectors. [4]


Related Research Articles

The following is a timeline of gravitational physics and general relativity.

<span class="mw-page-title-main">LIGO</span> Gravitational wave detector

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton.

<span class="mw-page-title-main">Rainer Weiss</span> Nobel Prize-winning American physicist

Rainer "Rai" Weiss is a German-born American physicist, known for his contributions in gravitational physics and astrophysics. He is a professor of physics emeritus at MIT and an adjunct professor at LSU. He is best known for inventing the laser interferometric technique which is the basic operation of LIGO. He was Chair of the COBE Science Working Group.

<span class="mw-page-title-main">Einstein@Home</span> BOINC volunteer computing project that analyzes data from LIGO to detect gravitational waves

Einstein@Home is a volunteer computing project that searches for signals from spinning neutron stars in data from gravitational-wave detectors, from large radio telescopes, and from a gamma-ray telescope. Neutron stars are detected by their pulsed radio and gamma-ray emission as radio and/or gamma-ray pulsars. They also might be observable as continuous gravitational wave sources if they are rapidly spinning and non-axisymmetrically deformed. The project was officially launched on 19 February 2005 as part of the American Physical Society's contribution to the World Year of Physics 2005 event.

<span class="mw-page-title-main">GEO600</span> Gravitational wave detector in Germany

GEO600 is a gravitational wave detector located near Sarstedt, a town 20 km to the south of Hanover, Germany. It is designed and operated by scientists from the Max Planck Institute for Gravitational Physics, Max Planck Institute of Quantum Optics and the Leibniz Universität Hannover, along with University of Glasgow, University of Birmingham and Cardiff University in the United Kingdom, and is funded by the Max Planck Society and the Science and Technology Facilities Council (STFC). GEO600 is capable of detecting gravitational waves in the frequency range 50 Hz to 1.5 kHz, and is part of a worldwide network of gravitational wave detectors. This instrument, and its sister interferometric detectors, when operational, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10−21, about the size of a single atom compared to the distance from the Sun to the Earth. Construction on the project began in 1995.

<span class="mw-page-title-main">Ronald Drever</span> British physicist (1931–2017)

Ronald William Prest Drever was a Scottish experimental physicist. He was a professor emeritus at the California Institute of Technology, co-founded the LIGO project, and was a co-inventor of the Pound–Drever–Hall technique for laser stabilisation, as well as the Hughes–Drever experiment. This work was instrumental in the first detection of gravitational waves in September 2015.

<span class="mw-page-title-main">Virgo interferometer</span> Gravitational wave detector in Santo Stefano a Macerata, Tuscany, Italy

The Virgo interferometer is a large Michelson interferometer designed to detect the gravitational waves predicted by general relativity. It is located in Santo Stefano a Macerata, near the city of Pisa, Italy. The instrument's two arms are three kilometres long, housing its mirrors and instrumentation inside an ultra-high vacuum.

<span class="mw-page-title-main">Gravitational wave</span> Propagating spacetime ripple

Gravitational waves are waves of the intensity of gravity that are generated by the accelerated masses of binary stars and other motions of gravitating masses, and propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. Gravitational waves are sometimes called gravity waves, but gravity waves typically refer to displacement waves in fluids. In 1916 Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime.

<span class="mw-page-title-main">Gravitational-wave observatory</span> Device used to measure gravitational waves

A gravitational-wave detector is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built and constantly improved. The present-day generation of laser interferometers has reached the necessary sensitivity to detect gravitational waves from astronomical sources, thus forming the primary tool of gravitational-wave astronomy.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is an emerging field of science, concerning the observations of gravitational waves to collect relatively unique data and make inferences about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

The LIGO Scientific Collaboration (LSC) is a scientific collaboration of international physics institutes and research groups dedicated to the search for gravitational waves.

<span class="mw-page-title-main">Alessandra Buonanno</span> Italian-American physicist

Alessandra Buonanno is an Italian-American theoretical physicist and director at the Max Planck Institute for Gravitational Physics in Potsdam. She is the head of the "Astrophysical and Cosmological Relativity" department. She holds a research professorship at the University of Maryland, College Park, and honorary professorships at the Humboldt University in Berlin, and the University of Potsdam. She is a leading member of the LIGO Scientific Collaboration, which observed gravitational waves from a binary black-hole merger in 2015.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

David Howard Reitze is an American laser physicist who is professor of physics at the University of Florida and served as the scientific spokesman of the Laser Interferometer Gravitational-Wave Observatory (LIGO) experiment in 2007-2011. In August 2011, he took a leave of absence from the University of Florida to be the Executive Director of LIGO, stationed at the California Institute of Technology, Pasadena, California. He obtained his BA in 1983 from Northwestern University, his PhD in physics from the University of Texas at Austin in 1990, and had positions at Bell Communications Research and Lawrence Livermore National Laboratory, before taking his faculty position at the University of Florida. He is a Fellow of the American Physical Society, the Optical Society, and the American Association for the Advancement of Science.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

<span class="mw-page-title-main">GW151226</span> Second gravitational-wave event detected by LIGO

GW151226 was a gravitational wave signal detected by the LIGO observatory on 25 December 2015 local time. On 15 June 2016, the LIGO and Virgo collaborations announced that they had verified the signal, making it the second such signal confirmed, after GW150914, which had been announced four months earlier the same year, and the third gravitational wave signal detected.

<span class="mw-page-title-main">GW170104</span>

GW170104 was a gravitational wave signal detected by the LIGO observatory on 4 January 2017. On 1 June 2017, the LIGO and Virgo collaborations announced that they had reliably verified the signal, making it the third such signal announced, after GW150914 and GW151226, and fourth overall.

<span class="mw-page-title-main">GW170814</span>

GW170814 was a gravitational wave signal from two merging black holes, detected by the LIGO and Virgo observatories on 14 August 2017. On 27 September 2017, the LIGO and Virgo collaborations announced the observation of the signal, the fourth confirmed event after GW150914, GW151226 and GW170104. It was the first binary black hole merger detected by LIGO and Virgo together.

<span class="mw-page-title-main">Jean-Paul Richard</span> Canadian physicist

Jean-Paul Richard was a Canadian physicist, academic and researcher. He was a Professor of Physics at the University of Maryland.

References

  1. 1 2 3 Lindley, David (22 December 2005). "A Fleeting Detection of Gravitational Waves". Physics. 16: 19. doi: 10.1103/PhysRevLett.25.180 . Retrieved 2006-05-06.
  2. Einstein: A Centenary Exhibition. Edited by the National Museum of History and Technology. Washington, D.C.: Smithsonian Institution Press, 1979.
  3. "Resonant Bar Detector Dedicated at Hanford". The LIGO web newsletter. Retrieved 2012-03-29.
  4. "Weber Garden Dedication Held March 12 - UMD Physics". umdphysics.umd.edu. Retrieved 2019-05-09.

Further reading