This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages) |
David Edward Pritchard | |
---|---|
Born | New York, U.S. | October 15, 1941
Alma mater | California Institute of Technology (MA) Harvard University (PhD) |
Scientific career | |
Fields | Atomic physics |
Institutions | Massachusetts Institute of Technology |
Thesis | Differential Spin Exchange Scattering: Sodium on Cesium. [1] (1968) |
Doctoral advisor | Daniel Kleppner |
Doctoral students | Eric Cornell |
Other notable students | Jerome Apt (Astronaut) |
Website | web |
David Edward Pritchard (born October 15, 1941) [2] is a professor at the Massachusetts Institute of Technology (MIT) who specializes in atomic physics and educational research.
Pritchard completed his PhD in 1968 at Harvard University under the supervision of Daniel Kleppner. His thesis involved building the first atomic scattering machine with polarized atoms to study differential spin exchange scattering, a process by which the 21 cm hydrogen line manifests. [1]
Pritchard was an early adopter of tunable lasers in physics and chemistry, demonstrating high-resolution spectroscopy through the simultaneous absorption of two laser photons. He employed both laser and radio-frequency spectroscopy to study weakly bound van der Waals molecules, such as NaNe [3] and KAr, [4] in cold supersonic molecular beams.
Pritchard made use of tunable lasers' ability to transfer momentum to atoms, leading to demonstrations of the diffraction of atoms from a standing wave of light (denoted Kapitza-Dirac or Raman-Nath regimes) and Bragg scattering [5] of atoms from light gratings, founding the field of coherent atom optics. [6] This led to the creation of the first atom interferometer, [7] where matter waves would propagate on both sides of a metal foil before recombining, so that different interactions on the two sides would result in a fringe shift of the atomic interference pattern. [8] This allowed for precise measurements of atomic polarizability, the refractive index of gaseous matter waves, and fundamental testing of quantum decoherence, as well as the first demonstration of the ability of atom interferometers to measure angular velocity like a gyroscope and to work for complex particles like Na2 molecules in the gaseous phase. [9]
A singularly important development from atom optics is Pritchard's invention of the magneto-optical trap [10] which captures and cools atoms to sub-millikelvin temperatures and of the Dark SPOT MOT, in which atoms are confined in a way such that they do not interact with trapping light. [11] Together with a magnetic atom trap, it can compress ~ 1010 cold atoms into the same small volume (This is sometimes called the Ioffe-Pritchard trap to honor its plasma physics origin). These traps are commonly used in the field of cold atom research and are the foundational tools for the MIT-Harvard Center for Ultracold Atoms .
In 1990, Pritchard brought Wolfgang Ketterle to MIT as a postdoctoral researcher to work on atom cooling. To encourage Ketterle to stay at MIT, in 1993 Ketterle was given his own experimental cold atom program (with two students and two grants) while Pritchard himself stepped aside from the field to allow Ketterle to be appointed to the faculty. Ketterle pursued atom cooling to achieve Bose–Einstein condensation in 1995, a discovery for which Ketterle was awarded the Nobel Prize in Physics in 2001, alongside Pritchard's former graduate student, Eric Allin Cornell, and Carl Wieman, who was an informal Pritchard mentee while an undergraduate at MIT. [12]
Ketterle and Pritchard then partnered to study atom optics and interferometry with Bose condensates, demonstrating coherent amplification of matter waves, superradiant Rayleigh scattering, and the power of Bragg spectroscopy to probe the condensate and used laser light to establish coherence between two condensates that never touch. Pritchard received the 2004 Max Born Award, "For creative application of light to new forms of spectroscopy, to manipulation and trapping of atoms, and for pioneering the new fields of atom optics and atom interferometry". [13]
Pritchard is a pioneer in the precise measurement of atomic and molecular masses using ion traps, an advance enabled by his group's developing highly sensitive radio-frequency detectors based on SQUIDs (superconducting quantum interference devices) and techniques to coherently cross-couple the motion of different modes of an ion's oscillation in the trap. These advances culminated in an ion balance in which one each of two different ions were simultaneously confined while their cyclotron frequencies were inter-compared to better than one part in 1011. [14] This led to the discovery of a new type of systematic shift of the cyclotron frequency due to the polarizability of the ion, providing the most accurate measurement of ionic molecule polarizability. It also resulted in a fifty-fold improvement of experimental tests of Albert Einstein's mass–energy equivalence that (where E is the energy, m is the mass and c the speed of light) – now at ½ part per million. [15]
Precise measurements of the masses of rubidium and caesium (Cesium) atoms made with the MIT apparatus have been combined with others' high-precision atom interferometric measurements of h/m (the Planck constant divided by the atom mass) to give the most accurate value of the fine structure constant at 0.2 ppb (parts per billion), differing by ~ 2.5 combined errors from measurement based on quantum electrodynamics. This is the most precise comparison of measurements made using entirely different theoretical bases.
In 1998, David Pritchard and his son Alex developed an online Socratic tutor, mycybertutor.com, which provides specific critiques of incorrect symbolic answers, hints upon request, and follow-up comments and questions. This tool has been shown to significantly improve students' ability to answer traditional MIT examination problems, increasing their performance by approximately 2 standard deviations. [16] The software is now marketed as Mastering Physics, Mastering Chemistry, and Mastering Astronomy by Pearson Education. It has become a widely used homework tutor in Science and Engineering, with approximately 2.5 million.
Pritchard's education research group, RELATE [17] was started in 2000 with the goal to "Apply the principles and techniques of science and engineering to study and improve learning, especially of expertise". They conduct research using all components in the acronym RELATE - Research in Learning, Assessing, and Tutoring Effectively. They showed that copying online homework is by far the best predictor of a low final exam grade in MIT residential physics, [16] and is the dominant contributor to ~ 5% of the certificates given by edX. They explored new types of instruction (e.g. deliberate practice of critical problem-solving skills) or variations in instruction (adding a diagram, replacing multiple choice questions with more interactive drag and drop questions, etc.) compared with traditional instruction (the control). [18] [19]
These experiments, along with other relevant research, indicated an important principle that students were struggling with – strategic thinking – the ability to determine which concepts and procedures are helpful in solving an unfamiliar problem. For this purpose, RELATE developed a Mechanics Reasoning Inventory [20] that measures strategic ability; it served as a benchmark of progress for their new pedagogy: Modeling Approach to Problem-Solving. This pedagogy was shown to greatly improve students' attitudes towards learning science, raise their scores on the Physics 1 final exam retake, [21] and subsequently help them improve their Physics 2 grade by ~ 1/2 standard deviation relative to students who didn't benefit from this intervention. [22]
Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.
Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.
Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuitive that laser cooling often results in sample temperatures approaching absolute zero. It is a routine step in many atomic physics experiments where the laser-cooled atoms are then subsequently manipulated and measured, or in technologies, such as atom-based quantum computing architectures. Laser cooling relies on the change in momentum when an object, such as an atom, absorbs and re-emits a photon. For example, if laser light illuminates a warm cloud of atoms from all directions and the laser's frequency is tuned below an atomic resonance, the atoms will be cooled. This common type of laser cooling relies on the Doppler effect where individual atoms will preferentially absorb laser light from the direction opposite to the atom's motion. The absorbed light is re-emitted by the atom in a random direction. After repeated emission and absorption of light the net effect on the cloud of atoms is that they will expand more slowly. The slower expansion reflects a decrease in the velocity distribution of the atoms, which corresponds to a lower temperature and therefore the atoms have been cooled. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity, therefore the lower the distribution of velocities, the lower temperature of the particles.
Wolfgang Ketterle is a German physicist and professor of physics at the Massachusetts Institute of Technology (MIT). His research has focused on experiments that trap and cool atoms to temperatures close to absolute zero, and he led one of the first groups to realize Bose–Einstein condensation in these systems in 1995. For this achievement, as well as early fundamental studies of condensates, he was awarded the Nobel Prize in Physics in 2001, together with Eric Allin Cornell and Carl Wieman.
Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.
An atom interferometer uses the wave-like nature of atoms in order to produce interference. In atom interferometers, the roles of matter and light are reversed compared to the laser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emits matter waves rather than light. Atom interferometers measure the difference in phase between atomic matter waves along different paths. Matter waves are controlled and manipulated using systems of lasers. Atom interferometers have been used in tests of fundamental physics, including measurements of the gravitational constant, the fine-structure constant, and universality of free fall. Applied uses of atom interferometers include accelerometers, rotation sensors, and gravity gradiometers.
In physics, atomic coherence is the induced coherence between levels of a multi-level atomic system and an electromagnetic field.
An atom laser is a coherent state of propagating atoms. They are created out of a Bose–Einstein condensate of atoms that are output coupled using various techniques. Much like an optical laser, an atom laser is a coherent beam that behaves like a wave. There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for light amplification by stimulated emission of radiation which is not particularly related to the physical object called an atom laser, and perhaps describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in the community today is to distinguish between the BEC, typically obtained by evaporation in a conservative trap, from the atom laser itself, which is a propagating atomic wave obtained by extraction from a previously realized BEC. Some ongoing experimental research tries to obtain directly an atom laser from a "hot" beam of atoms without making a trapped BEC first.
Atom optics "refers to techniques to manipulate the trajectories and exploit the wave properties of neutral atoms". Typical experiments employ beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate or a concave atomic mirror.
In condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important.
This page deals with the electron affinity as a property of isolated atoms or molecules. Solid state electron affinities are not listed here.
Electron beam ion trap (EBIT) is an electromagnetic bottle that produces and confines highly charged ions. An EBIT uses an electron beam focused with a powerful magnetic field to ionize atoms to high charge states by successive electron impact.
Di-positronium, or dipositronium, is an exotic molecule consisting of two atoms of positronium. It was predicted to exist in 1946 by John Archibald Wheeler, and subsequently studied theoretically, but was not observed until 2007 in an experiment performed by David Cassidy and Allen Mills at the University of California, Riverside. The researchers made the positronium molecules by firing intense bursts of positrons into a thin film of porous silicon dioxide. Upon slowing down in the silica, the positrons captured ordinary electrons to form positronium atoms. Within the silica, these were long lived enough to interact, forming molecular di-positronium. Advances in trapping and manipulating positrons, and spectroscopy techniques have enabled studies of Ps–Ps interactions. In 2012, Cassidy et al. were able to produce the excited molecular positronium angular momentum state.
A trojan wave packet is a wave packet that is nonstationary and nonspreading. It is part of an artificially created system that consists of a nucleus and one or more electron wave packets, and that is highly excited under a continuous electromagnetic field. Its discovery as one of significant contributions to the Quantum Theory was awarded the 2022 Wigner Medal for Iwo Bialynicki-Birula
Christopher Roy Monroe is an American physicist and engineer in the areas of atomic, molecular, and optical physics and quantum information science, especially quantum computing. He directs one of the leading research and development efforts in ion trap quantum computing. Monroe is the Gilhuly Family Presidential Distinguished Professor of Electrical and Computer Engineering and Physics at Duke University and is College Park Professor of Physics at the University of Maryland and Fellow of the Joint Quantum Institute and Joint Center for Quantum Computer Science. He is also co-founder of IonQ, Inc.
Jürgen Mlynek is a German physicist and was president of the Helmholtz Association of German Research Centres from 2005 to 2015.
Peter E. Toschek was a German experimental physicist who researched nuclear physics, quantum optics, and laser physics. He is known as a pioneer of laser spectroscopy and for the first demonstration of single trapped atoms (ions). He was a professor at Hamburg University.
The I. I. Rabi Prize in Atomic, Molecular, and Optical Physics is given by the American Physical Society to recognize outstanding work by mid-career researchers in the field of atomic, molecular, and optical physics. The award was endowed in 1989 in honor of the physicist I. I. Rabi and has been awarded biannually since 1991.
Jabez Jenkins McClelland is an American physicist. He is best known for his work applying the techniques of laser cooling and atom optics to nanotechnology. This work involved expanding the number of atomic species that could be laser cooled from the alkalis and a few alkaline earth and noble gas species, to transition metals such a chromium and rare earths such as erbium. In the early 1990s he and colleagues showed that the nodes of an optical standing wave could act as lenses, focusing chromium atoms as they deposit onto a surface to create a permanent grating structure whose periodicity is precisely tied to an atomic resonance frequency, making it a useful nanoscale length standard. In the early 2000s his team showed that laser cooled atoms can produce a very high brightness ion beam when ionized just above threshold, and used this technique to realize a high resolution lithium ion microscope.
John Morrissey Doyle is an American physicist working in the field of Atomic, Molecular, and Optical (AMO) physics and Precision Particle Physics. He is the Henry B. Silsbee Professor of Physics, Director of the Japanese Undergraduate Research Exchange Program (JUREP), Co-Director of the Harvard Quantum Initiative as well as Co-director of the Ph.D. Program in Quantum Science and Engineering at Harvard University.