Multi-messenger astronomy

Last updated

Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, each of which may independently emit signals of a characteristic "messenger" type: electromagnetic radiation (including infrared, visible light and X-rays), gravitational waves, neutrinos, and cosmic rays. When received on Earth, identifying that disparate observations were generated by the same source can allow for improved reconstruction or a better understanding of the event, and reveals more information about the source.

Contents

The main multi-messenger sources outside the heliosphere are: compact binary pairs (black holes and neutron stars), supernovae, irregular neutron stars, gamma-ray bursts, active galactic nuclei, and relativistic jets. [1] [2] [3] The table below lists several types of events and expected messengers.

Detection from one messenger and non-detection from a different messenger can also be informative. [4] Lack of any electromagnetic counterpart, for example, could be evidence in support of the remnant being a black hole.

Event typeElectromagneticCosmic rays Gravitational waves NeutrinosExample
Solar flare yesyes--SOL1942-02-28 [5] [ failed verification ]
Supernova yes-predicted [6] yes SN 1987A
Neutron star merger yes-yespredicted [7] GW170817
Blazar yespossible-yes TXS 0506+056 (IceCube)
Active galactic nucleus yespossibleyes Messier 77 [8] [9] (IceCube)
Tidal disruption event yespossiblepossibleyesAT2019dsg [10] (IceCube)

AT2019fdr [11] (IceCube)

Networks

The Supernova Early Warning System (SNEWS), established in 1999 at Brookhaven National Laboratory and automated since 2005, combines multiple neutrino detectors to generate supernova alerts. (See also neutrino astronomy).

The Astrophysical Multimessenger Observatory Network (AMON), [12] created in 2013, [13] is a broader and more ambitious project to facilitate the sharing of preliminary observations and to encourage the search for "sub-threshold" events which are not perceptible to any single instrument. It is based at Pennsylvania State University.

Milestones

References

  1. Bartos, Imre; Kowalski, Marek (2017). Multimessenger Astronomy. IOP Publishing. Bibcode:2017muas.book.....B. doi:10.1088/978-0-7503-1369-8. ISBN   978-0-7503-1369-8.
  2. Franckowiak, Anna (2017). "Multimessenger Astronomy with Neutrinos". Journal of Physics: Conference Series. 888 (12009): 012009. Bibcode:2017JPhCS.888a2009F. doi: 10.1088/1742-6596/888/1/012009 .{{cite journal}}: CS1 maint: article number as page number (link)
  3. Branchesi, Marica (2016). "Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays". Journal of Physics: Conference Series. 718 (22004): 022004. Bibcode:2016JPhCS.718b2004B. doi: 10.1088/1742-6596/718/2/022004 .{{cite journal}}: CS1 maint: article number as page number (link)
  4. Abadie, J.; et al. (The LIGO Collaboration) (2012). "Implications for the origins of GRB 051103 from the LIGO observations". The Astrophysical Journal. 755 (1): 2. arXiv: 1201.4413 . Bibcode:2012ApJ...755....2A. doi:10.1088/0004-637X/755/1/2. S2CID   15494223.
  5. 1 2 Spurio, Maurizio (2015). Particles and Astrophysics: A Multi-Messenger Approach. Astronomy and Astrophysics Library. Springer. p. 46. doi:10.1007/978-3-319-08051-2. ISBN   978-3-319-08050-5.
  6. Supernova Theory Group: Core-Collapse Supernova Gravitational Wave Signature Catalog
  7. "No neutrino emission from a binary neutron star merger". 16 October 2017. Retrieved 20 July 2018.
  8. IceCube Collaboration*†; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C. (2022-11-04). "Evidence for neutrino emission from the nearby active galaxy NGC 1068". Science. 378 (6619): 538–543. arXiv: 2211.09972 . Bibcode:2022Sci...378..538I. doi:10.1126/science.abg3395. hdl:1854/LU-01GSA90WVKWXWD30RYFKKK1XC6. ISSN   0036-8075. PMID   36378962. S2CID   253320297.
  9. Staff (3 November 2022). "IceCube neutrinos give us first glimpse into the inner depths of an active galaxy". IceCube. Retrieved 2022-11-23.
  10. 1 2 A tidal disruption event coincident with a high-energy neutrino (free preprint)
  11. Reusch, Simeon; Stein, Robert; Kowalski, Marek; van Velzen, Sjoert; Franckowiak, Anna; Lunardini, Cecilia; Murase, Kohta; Winter, Walter; Miller-Jones, James C. A.; Kasliwal, Mansi M.; Gilfanov, Marat (2022-06-03). "Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino". Physical Review Letters. 128 (22): 221101. arXiv: 2111.09390 . Bibcode:2022PhRvL.128v1101R. doi:10.1103/PhysRevLett.128.221101. hdl:20.500.11937/90027. PMID   35714251. S2CID   244345574.{{cite journal}}: CS1 maint: article number as page number (link)
  12. "AMON home page". Archived from the original on 2018-09-30. Retrieved 2017-10-15.
  13. Smith, M.W.E.; et al. (May 2013). "The Astrophysical Multimessenger Observatory Network (AMON)" (PDF). Astroparticle Physics. 45: 56–70. arXiv: 1211.5602 . Bibcode:2013APh....45...56S. doi:10.1016/j.astropartphys.2013.03.003. hdl:2060/20140006956. S2CID   55937718.
  14. Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA . Retrieved 17 October 2017.
  15. Albert, A.; et al. (ANTARES, IceCube, and the Pierre Auger Observatory) (16 Oct 2017). "Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory". The Astrophysical Journal. 850 (2): L35. arXiv: 1710.05839 . Bibcode:2017ApJ...850L..35A. doi: 10.3847/2041-8213/aa9aed . S2CID   217180814.
  16. Starr, Michelle (2020-10-12). "Astronomers Detect Eerie Glow Still Radiating From Neutron Star Collision Years Later". ScienceAlert. Retrieved 2023-01-04.
  17. Finkbeiner, A. (2017-09-22). "The New Era of Multimessenger Astronomy". Scientific American. 318 (5): 36–41. doi:10.1038/scientificamerican0518-36. PMID   29672499.
  18. "IceCube-170922A - IceCube observation of a high-energy neutrino candidate event". nasa.gov. 2017-09-23.
  19. Cleary, D. (2018-07-12). "Ghostly particle caught in polar ice ushers in new way to look at the universe". Science. doi:10.1126/science.aau7505. S2CID   126347626.
  20. IceCube Collaboration (2018-07-12). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert". Science. 361 (6398): 147–151. arXiv: 1807.08794 . Bibcode:2018Sci...361..147I. doi:10.1126/science.aat2890. PMID   30002248. S2CID   133261745.
  21. "ATel #10791: Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region".
  22. Mirzoyan, Razmik (2017-10-04). "ATel #10817: First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A". Astronomerstelegram.org. Retrieved 2018-07-16.
  23. 1 2 Aartsen; et al. (The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, VLA/17B-403 teams) (12 July 2018). "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A". Science . 361 (6398): eaat1378. arXiv: 1807.08816 . Bibcode:2018Sci...361.1378I. doi:10.1126/science.aat1378. PMID   30002226. S2CID   49734791.{{cite journal}}: CS1 maint: article number as page number (link)
  24. De Angelis, Alessandro; Pimenta, Mario (2018). Introduction to particle and astroparticle physics (multimessenger astronomy and its particle physics foundations). Springer. doi:10.1007/978-3-319-78181-5. ISBN   978-3-319-78181-5.
  25. Aartsen; et al. (IceCube Collaboration) (12 July 2018). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert". Science. 361 (6398): 147–151. arXiv: 1807.08794 . Bibcode:2018Sci...361..147I. doi:10.1126/science.aat2890. PMID   30002248. S2CID   133261745.
  26. Overbye, Dennis (July 12, 2018). "It Came From a Black Hole, and Landed in Antarctica - For the first time, astronomers followed cosmic neutrinos into the fire-spitting heart of a supermassive blazar". The New York Times . Retrieved July 13, 2018.
  27. "Neutrino that struck Antarctica traced to galaxy 3.7bn light years away". The Guardian. July 12, 2018. Retrieved July 12, 2018.
  28. "Source of cosmic 'ghost' particle revealed". BBC. July 12, 2018. Retrieved 12 July 2018.[ dead link ]
  29. Buchanan, Mark (2022-06-03). "Neutrinos from a Black Hole Snack". Physics. 15: 77. Bibcode:2022PhyOJ..15...77B. doi: 10.1103/Physics.15.77 . S2CID   251078776.
  30. Wright, Katherine (2023). "Milky Way Viewed through Neutrinos". Physics. 16. Physics 16, 115 (29 June 2023): 115. Bibcode:2023PhyOJ..16..115W. doi: 10.1103/Physics.16.115 . Kurahashi Neilson first came up with the idea to use cascade neutrinos to map the Milky Way in 2015.
  31. Chang, Kenneth (29 June 2023). "Neutrinos Build a Ghostly Map of the Milky Way - Astronomers for the first time detected neutrinos that originated within our local galaxy using a new technique". The New York Times . Archived from the original on 29 June 2023. Retrieved 30 June 2023.
  32. IceCube Collaboration (29 June 2023). "Observation of high-energy neutrinos from the Galactic plane". Science. 380 (6652): 1338–1343. arXiv: 2307.04427 . doi:10.1126/science.adc9818. PMID   37384687. Archived from the original on 30 June 2023. Retrieved 30 June 2023.