MAGIC (telescope)

Last updated
Major Atmospheric Gamma Imaging Cherenkov Telescopes
MAGIC Telescope - La Palma.JPG
The first MAGIC telescope
Alternative namesMAGIC OOjs UI icon edit-ltr-progressive.svg
Part of Roque de los Muchachos Observatory   OOjs UI icon edit-ltr-progressive.svg
Location(s) La Palma, Atlantic Ocean, international waters
Coordinates 28°45′43″N17°53′24″W / 28.761944444444°N 17.89°W / 28.761944444444; -17.89 OOjs UI icon edit-ltr-progressive.svg
Altitude2,200 m (7,200 ft) OOjs UI icon edit-ltr-progressive.svg
Wavelength Gamma rays (indirectly)
Built2004
First light 2004, 2009  OOjs UI icon edit-ltr-progressive.svg
Telescope style IACT
reflecting telescope
gamma-ray telescope  OOjs UI icon edit-ltr-progressive.svg
Diameter17 m (55 ft 9 in) OOjs UI icon edit-ltr-progressive.svg
Collecting area236 m2 (2,540 sq ft) OOjs UI icon edit-ltr-progressive.svg
Focal length f/D 1.03
Mounting metal structure
Replaced HEGRA   OOjs UI icon edit-ltr-progressive.svg
Website magic.mpp.mpg.de OOjs UI icon edit-ltr-progressive.svg
Canarias-loc.svg
Red pog.svg
Location of MAGIC
  Commons-logo.svg Related media on Commons

MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescopes, later renamed to MAGIC Florian Goebel Telescopes) is a system of two Imaging Atmospheric Cherenkov telescopes situated at the Roque de los Muchachos Observatory on La Palma, one of the Canary Islands, at about 2200 m above sea level. MAGIC detects particle showers released by gamma rays, using the Cherenkov radiation, i.e., faint light radiated by the charged particles in the showers. With a diameter of 17 meters for the reflecting surface, it was the largest in the world before the construction of H.E.S.S. II.

Contents

The first telescope was built in 2004 and operated for five years in standalone mode. A second MAGIC telescope (MAGIC-II), at a distance of 85 m from the first one, started taking data in July 2009. Together they integrate the MAGIC telescope stereoscopic system. [1]

MAGIC is sensitive to cosmic gamma rays with photon energies between 50  GeV (later lowered to 25 GeV) and 30  TeV due to its large mirror; other ground-based gamma-ray telescopes typically observe gamma energies above 200–300 GeV. Gamma-ray astronomy also utilizes satellite-based detectors, which can detect gamma-rays in the energy range from keV up to several GeV.

Aims

The goals of the telescope are to detect and study primarily photons coming from:

Observations

MAGIC has found pulsed gamma-rays at energies higher than 25 GeV coming from the Crab Pulsar. [4] The presence of such high energies indicates that the gamma-ray source is far out in the pulsar's magnetosphere, in contradiction with many models.

In 2006 MAGIC detected [5] very high energy cosmic rays from the quasar 3C 279, which is 5 billion light years from Earth. This doubles the previous record distance from which very high energy cosmic rays have been detected. The signal indicated that the universe is more transparent than previously thought based on data from optical and infrared telescopes.

MAGIC did not observe cosmic rays resulting from dark matter decays in the dwarf galaxy Draco. [6] This strengthens the known constraints on dark matter models.

A much more controversial observation is an energy dependence in the speed of light of cosmic rays coming from a short burst of the blazar Markarian 501 on July 9, 2005. Photons with energies between 1.2 and 10 TeV arrived 4 minutes after those in a band between 0.25 and 0.6 TeV. The average delay was 30 ±12 ms per GeV of energy of the photon. If the relation between the space velocity of a photon and its energy is linear, then this translates into the fractional difference in the speed of light being equal to minus the photon's energy divided by 2×1017 GeV. The researchers have suggested that the delay could be explained by the presence of quantum foam, the irregular structure of which might slow down photons by minuscule amounts only detectable at cosmic distances such as in the case of the blazar. [7] [8]

Technical specifications

MAGIC on a sunny day Magicmirror.jpg
MAGIC on a sunny day
Individual segments of a MAGIC telescope Tiles of a MAGIC telescope.jpg
Individual segments of a MAGIC telescope

Each telescope has the following specifications:

Each mirror of the reflector is a sandwich of an aluminum honeycomb, 5 mm plate of AlMgSi alloy, covered with a thin layer of quartz to protect the mirror surface from aging. The mirrors have spherical shape with a curvature corresponding to the position of the plate in the paraboloid reflector. The reflectivity of the mirrors is around 90%. The focal spot has a size of roughly half a pixel size (<0.05°).

Directing the telescope to different elevation angles causes the reflector to deviate from its ideal shape due to the gravity. To counteract this deformation, the telescope is equipped with an Active Mirror Control system. Four mirrors are mounted on each panel, which is equipped with actuators that can adjust its orientation in the frame.

The signal from the detector is transmitted over 162 m of optical fibers. The signal is digitized and stored in a 32 kB ring buffer. The readout of the ring buffer results in a dead time of 20 μs, which corresponds to about 2% dead time at the design trigger rate of 1 kHz. The readout is controlled by an FPGA (Xilinx) chip on a PCI (MicroEnable) card. The data is saved to a RAID0 disk system at a rate up to 20 MB/s, which results in up to 800 GB raw data per night. [9]

Collaborating institutions

During foggy nights, the laser reference beams of MAGIC's active control could be seen. However, they are no longer needed for operation. The MAGIC Telescope at night.jpg
During foggy nights, the laser reference beams of MAGIC's active control could be seen. However, they are no longer needed for operation.

Physicists from over twenty institutions in Germany, Spain, Italy, Switzerland, Croatia, Finland, Poland, India, Bulgaria and Armenia collaborate in using MAGIC; the largest groups are at

See also

Related Research Articles

<span class="mw-page-title-main">Cosmic ray</span> High-energy particle, mainly originating outside the Solar system

Cosmic rays or astroparticles are high-energy particles or clusters of particles that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk are deflected off into space by the magnetosphere or the heliosphere.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

In astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray with an energy greater than 1 EeV (1018 electronvolts, approximately 0.16 joules), far beyond both the rest mass and energies typical of other cosmic ray particles.

<span class="mw-page-title-main">CERN Axion Solar Telescope</span> Experiment in astroparticle physics, sited at CERN in Switzerland

The CERN Axion Solar Telescope (CAST) is an experiment in astroparticle physics to search for axions originating from the Sun. The experiment, sited at CERN in Switzerland, was commissioned in 1999 and came online in 2002 with the first data-taking run starting in May 2003. The successful detection of solar axions would constitute a major discovery in particle physics, and would also open up a brand new window on the astrophysics of the solar core.

<span class="mw-page-title-main">HEGRA</span>

HEGRA, which stands for High-Energy-Gamma-Ray Astronomy, was an atmospheric Cherenkov telescope for Gamma-ray astronomy. With its various types of detectors, HEGRA took data between 1987 and 2002, at which point it was dismantled in order to build its successor, MAGIC, at the same site.

<span class="mw-page-title-main">High Energy Stereoscopic System</span> Gamma Ray Telescope System in Namibia

High Energy Stereoscopic System (H.E.S.S.) is a system of imaging atmospheric Cherenkov telescopes (IACTs) for the investigation of cosmic gamma rays in the photon energy range of 0.03 to 100 TeV. The acronym was chosen in honour of Victor Hess, who was the first to observe cosmic rays.

<span class="mw-page-title-main">IceCube Neutrino Observatory</span> Neutrino detector at the South Pole

The IceCube Neutrino Observatory is a neutrino observatory developed by the University of Wisconsin–Madison and constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometer.

<span class="mw-page-title-main">IACT</span> Device to detect very-high-energy gamma ray photons

IACT stands for imaging atmosphericCherenkov telescope or technique. It is a device or method to detect very-high-energy gamma ray photons in the photon energy range of 50 GeV to 50 TeV.

<span class="mw-page-title-main">VERITAS</span> Ground-based gamma-ray observatory

VERITAS is a major ground-based gamma-ray observatory with an array of four 12 meter optical reflectors for gamma-ray astronomy in the GeV – TeV photon energy range. VERITAS uses the Imaging Atmospheric Cherenkov Telescope technique to observe gamma rays that cause particle showers in Earth's atmosphere that are known as extensive air showers. The VERITAS array is located at the Fred Lawrence Whipple Observatory, in southern Arizona, United States. The VERITAS reflector design is similar to the earlier Whipple 10-meter gamma-ray telescope, located at the same site, but is larger in size and has a longer focal length for better control of optical aberrations. VERITAS consists of an array of imaging telescopes deployed to view atmospheric Cherenkov showers from multiple locations to give the highest sensitivity in the 100 GeV – 10 TeV band. This very high energy observatory, completed in 2007, effectively complements the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope due to its larger collection area as well as coverage in a higher energy band.

<span class="mw-page-title-main">Telescope</span> Instrument that makes distant objects appear magnified

A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally, it was an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects – an optical telescope. Nowadays, the word "telescope" is defined as a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.

<span class="mw-page-title-main">Cosmic-ray observatory</span> Installation built to detect high-energy-particles coming from space

A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays. This typically includes photons, electrons, protons, and some heavier nuclei, as well as antimatter particles. About 90% of cosmic rays are protons, 9% are alpha particles, and the remaining ~1% are other particles.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies at the very shortest wavelengths. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

<span class="mw-page-title-main">Very-high-energy gamma ray</span> Gamma radiation with photon energies between 100GeV and 100TeV

Very-high-energy gamma ray (VHEGR) denotes gamma radiation with photon energies of 100 GeV (gigaelectronvolt) to 100 TeV (teraelectronvolt), i.e., 1011 to 1014 electronvolts. This is approximately equal to wavelengths between 10−17 and 10−20 meters, or frequencies of 2 × 1025 to 2 × 1028 Hz. Such energy levels have been detected from emissions from astronomical sources such as some binary star systems containing a compact object. For example, radiation emitted from Cygnus X-3 has been measured at ranges from GeV to exaelectronvolt-levels. Other astronomical sources include BL Lacertae, 3C 66A Markarian 421 and Markarian 501. Various other sources exist that are not associated with known bodies. For example, the H.E.S.S. catalog contained 64 sources in November 2011.

<span class="mw-page-title-main">Markarian 501</span> Elliptical galaxy emitting very-high-energy gamma rays

Markarian 501 is a galaxy with a spectrum extending to the highest energy gamma rays. It is a blazar or BL Lac object, which is an active galactic nucleus with a jet that is shooting towards the Earth. The object has a redshift of z = 0.034.

Major Atmospheric Cerenkov Experiment Telescope (MACE) is an imaging atmospheric Cerenkov telescope (IACT) located near Hanle, Ladakh, India. It is the highest and second largest Cerenkov telescope in the world. It was built by Electronics Corporation of India, Hyderabad, for the Bhabha Atomic Research Centre and was assembled at the campus of Indian Astronomical Observatory at Hanle. It was originally scheduled to become operational by 2016, but plans were pushed back to begin operations in 2020. It will be remotely operated and will run on solar power.

<span class="mw-page-title-main">High Altitude Water Cherenkov Experiment</span>

The High Altitude Water Cherenkov Experiment or High Altitude Water Cherenkov Observatory is a gamma-ray and cosmic ray observatory located on the flanks of the Sierra Negra volcano in the Mexican state of Puebla at an altitude of 4100 meters, at 18°59′41″N97°18′30.6″W. HAWC is the successor to the Milagro gamma-ray observatory in New Mexico, which was also a gamma-ray observatory based around the principle of detecting gamma-rays indirectly using the water Cherenkov method.

Indirect detection of dark matter is a method of searching for dark matter that focuses on looking for the products of dark matter interactions rather than the dark matter itself. Contrastingly, direct detection of dark matter looks for interactions of dark matter directly with atoms. There are experiments aiming to produce dark matter particles using colliders. Indirect searches use various methods to detect the expected annihilation cross sections for weakly interacting massive particles (WIMPs). It is generally assumed that dark matter is stable, that dark matter interacts with Standard Model particles, that there is no production of dark matter post-freeze-out, and that the universe is currently matter-dominated, while the early universe was radiation-dominated. Searches for the products of dark matter interactions are profitable because there is an extensive amount of dark matter present in the universe, and presumably, a lot of dark matter interactions and products of those interactions ; and many currently operational telescopes can be used to search for these products. Indirect searches help to constrain the annihilation cross section the lifetime of dark matter , as well as the annihilation rate.

Mary Paula Chadwick is a British physicist who is professor and head of the Department of Physics at Durham University. Her research investigates gamma-ray astronomy and astroparticle physics. She is involved with the Cherenkov Telescope Array.

<span class="mw-page-title-main">IC 310</span> Lenticular galaxy in the constellation Perseus

IC 310 is a lenticular galaxy located in the constellation Perseus. It is located 265 million light-years from Earth, which means, given its apparent dimensions, it is about 117,000 light-years across. The galaxy was discovered by Edward D. Swift on November 3, 1888.

References

  1. "Technical status of the MAGIC telescopes", MAGIC collaboration, Proc. International Cosmic Rays Conference 2009, arXiv:0907.1211
  2. Albert, J. (2006). "Variable Very-High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303". Science. 312 (5781): 1771–3. arXiv: astro-ph/0605549 . Bibcode:2006Sci...312.1771A. doi:10.1126/science.1128177. PMID   16709745. S2CID   20981239.
  3. Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Coarasa, J. A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Curtef, V.; Danielyan, V.; et al. (2007). "Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Binary Cygnus X-1" (PDF). The Astrophysical Journal. 665 (1): L51–L54. arXiv: 0706.1505 . Bibcode:2007ApJ...665L..51A. doi:10.1086/521145. hdl:2445/150806. S2CID   15302221.
  4. Aliu, E.; Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; et al. (2008). "Observation of Pulsed -Rays Above 25 GeV from the Crab Pulsar with MAGIC". Science. 322 (5905): 1221–1224. arXiv: 0809.2998 . Bibcode:2008Sci...322.1221A. doi:10.1126/science.1164718. PMID   18927358. S2CID   5387958.
  5. Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; et al. (2008-06-27). "Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent is the Universe?". Science. 320 (5884): 1752–4. arXiv: 0807.2822 . Bibcode:2008Sci...320.1752M. doi:10.1126/science.1157087. PMID   18583607. S2CID   16886668.{{cite journal}}: CS1 maint: date and year (link)
  6. Albert, J.; et al. (2008). "Upper Limit for γ‐Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy Draco". The Astrophysical Journal. 679 (1): 428–431. arXiv: 0711.2574 . Bibcode:2008ApJ...679..428A. doi:10.1086/529135. S2CID   15324383.
  7. Albert, J.; Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.; Sakharov, A. S.; Sarkisyan, E. K. G. (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope". Physics Letters B. 668 (4): 253–257. arXiv: 0708.2889 . Bibcode:2008PhLB..668..253M. doi:10.1016/j.physletb.2008.08.053. S2CID   5103618.
  8. Lee, Chris (2007-08-23). "Probing quantum gravity with gamma ray bursters". Ars Technica. Retrieved 2022-08-10.
  9. 1 2 Cortina, J.; for the MAGIC collaboration (2005). "Status and First Results of the MAGIC Telescope". Astrophysics and Space Science. 297 (2005): 245–255. arXiv: astro-ph/0407475 . Bibcode:2005Ap&SS.297..245C. doi:10.1007/s10509-005-7627-5. S2CID   16311614.