Actuator

Last updated

An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). The effect is usually produced in a controlled way. [1] An actuator translates such an input signal into the required form of mechanical energy. It is a type of transducer. [2] In simple terms, it is a "mover".

Contents

An actuator requires a control device (which provides control signal) and a source of energy. The control signal is relatively low in energy and may be voltage, electric current, pneumatic, or hydraulic fluid pressure, or even human power[ clarification needed ]. [3] In the electric, hydraulic, and pneumatic sense, it is a form of automation or automatic control.

The displacement achieved is commonly linear or rotational, as exemplified by linear motors and rotary motors, respectively. Rotary motion is more natural for small machines making large displacements. By means of a leadscrew, rotary motion can be adapted to function as a linear actuator (which produces a linear motion, but is not a linear motor).

Another broad classification of actuators separates them into two types: incremental-drive actuators and continuous-drive actuators. Stepper motors are one type of incremental-drive actuators. Examples of continuous-drive actuators include DC torque motors, induction motors, hydraulic and pneumatic motors, and piston-cylinder drives (rams). [4]

Types of actuators

Mechanical

An actuator can be just a mechanism that is directly driven by the motions or forces of other parts of the system. An example is the camshafts that drive the intake and exhaust valves in internal combustion engines, driven by the engine itself. Another example is the mechanism that strikes the hours in a traditional grandfather clock or cuckoo clock.

Hydraulic

A hydraulic actuator typically uses the pressure of a liquid (usually oil) to cause a piston to slide inside a hollow cylindrical tube linear, rotatory or oscillatory motion. In a single acting actuator the fluid pressure is applied to just one side of the piston, so that it applies useful force in only one direction. The opposite motion may be effected by a spring, by gravity, or by other forces present in the system. In a double acting actuator, the return stroke is driven by fluid pressure applied to the opposite side of the piston. [5]

Since liquids are nearly impossible to compress, a hydraulic actuator can exert a large force. The drawback of this approach is its limited acceleration. They respond quickly to input changes, have little inertia, can operate continuously over a relatively large working range, and can hold their position without any significant energy input.

A hydraulic actuator can be used to displace the rack of a rack and pinion mechanism, causing the pinion to turn. This arrangement is used, for example, to operate valves in pipelines and other industrial fluid transport installations. [6]

Pneumatic

Pneumatic actuator operating a valve through a rack-and-pinion mechanism. Pneumatic Rack and Pinion Actuators.JPG
Pneumatic actuator operating a valve through a rack-and-pinion mechanism.

A pneumatic actuator is similar to a hydraulic one but uses a gas (usually air) instead of a liquid. [8] [9] Compared to hydraulic actuators, pneumatic ones are less complicated because they do not need pipes for the return and recycling of the working fluid. On the other hand, they still need external infrastructure such as compressors, reservoirs, filters, and air treatment subsystems, which often makes them less convenient that electrical and electromechanical actuators.

In the first steam engines and in all steam locomotives, steam pressure is used to drive pneumatic actuators to produce a reciprocating motion, which is converted to rotary motion by some sort of crankshaft mechanism.

Electric

Electric valve actuator controlling a  1/2 needle valve. Compact and electric valve actuator.jpg
Electric valve actuator controlling a ½ needle valve.

Since 1960, several actuator technologies have been developed. Electric actuators can be classified in the following groups:

Electromechanical

An electromechanical actuator (EMA) uses mechanical means to convert the rotational force of an ordinary (rotary) electric motor into a linear movement. The mechanism may be a toothed belt or a screw (either a ball or a lead screw or planetary roller screw).

The main advantages of electromechanical actuators are their relatively good level of accuracy with respect to pneumatics, their possible long lifecycle and the little maintenance effort required (might require grease). It is possible to reach relatively high force, on the order of 100 kN.

The main limitation of these actuators are the reachable speed, the important dimensions and weight they require. The main application of such actuators is mainly seen in health care devices and factory automation.

Electrohydraulic

Another approach is an electrohydraulic actuator, where the electric motor remains the prime mover but provides torque to operate a hydraulic accumulator that is then used to transmit actuation force in much the same way that diesel engine/hydraulics are typically used in heavy equipment.

Electrical energy is used to actuate equipment such as multi-turn valves, or electric-powered construction and excavation equipment.

When used to control the flow of fluid through a valve, a brake is typically installed above the motor to prevent the fluid pressure from forcing open the valve. If no brake is installed, the actuator gets activated to reclose the valve, which is slowly forced open again. This sets up an oscillation (open, close, open ...) and the motor and actuator will eventually become damaged. [10]

Rotary

Electric rotary actuators use a rotary motor to turn the target part over a certain angle. [11] Rotary actuators can have up to a rotation of 360 degrees. This allows it to differ from a linear motor as the linear is bound to a set distance compared to the rotary motor. Rotary motors have the ability to be set at any given degree in a field making the device easier to set up still with durability and a set torque.

Rotary motors can be powered by 3 different techniques such as Electric, Fluid, or Manual. [12] However, Fluid powered rotary actuators have 5 sub-sections of actuators such as Scotch Yoke, Vane, Rack-and-Pinion, Helical, and Electrohydraulic. All forms have their own specific design and use allowing the ability to choose multiple angles of degree.

Applications for the rotary actuators are just about endless but, will more than likely be found dealing with mostly hydraulic pressured devices and industries. Rotary actuators are even used in the robotics field when seeing robotic arms in industry lines. Anything you see that deals with motion control systems to perform a task in technology is a good chance to be a rotary actuator. [12]

Linear

A linear electric actuator uses a linear motor, which can be thought as a rotary electric motor which has been cut and unrolled. Thus, instead of producing a rotational movement, it produces a linear force along their length. Because it generally has lower friction losses than the alternatives, a linear electric actuator can last over a hundred million cycles.

Linear motors are divided in 3 basic categories: flat linear motor (classic), U-Channel linear motors and Tubular linear motors.

Linear motor technology is the best solution in the context of a low load (up to 30Kgs) because it provides the highest level of speed, control and accuracy.

In fact, it represents the most desired and versatile technology. Due to the limitations of pneumatics, the current electric actuator technology is a viable solution for specific industry applications and it has been successfully introduced in market segments such as the watchmaking, semiconductor and pharmaceutical industries (as high as 60% of the applications. The growing interest for this technology, can be explained by the following characteristics:

  • High precision (equal or less than 0,1 mm);
  • High cycling rate (greater than 100 cycles/min);
  • Possible usage in clean and highly-regulated environments (no leakages of air, humidity or lubricants allowed);
  •  Need for programmable motion in the situation of complex operations

The main disadvantages of linear motors are:

  • They are expensive respect to pneumatics and other electric technologies.
  • They are not easy to integrate in standard machineries due to their important size and high weight.
  • They have a low force density respect to pneumatic and electromechanical actuators.

Thermal

An actuator may be driven by heat through the expansion that most solid material exhibit when the temperature increases. This principle is commonly used, for example, to operate electric switches in thermostats. Typically, a (non-electronic) thermostat contains a strip with two layers of different metals, that will bend when heated.

Thermal actuators may also exploit the properties of shape-memory alloys. [13]

Magnetic

Some actuators are driven by externally applied magnetic fields. They typically contain parts made of ferromagnetic materials that are strongly attracted to each other when they are magnetized by the external field. An example are the reed switches that may be used as door opening sensors in a building security system.

Alternatively, magnetic actuators can use magnetic shape-memory alloys.

Thermal actuators Thermische Stellantriebe, Thermische Antriebe, Fussbodenheizung, thermal actuator, actuateur thermique.jpg
Thermal actuators

Soft actuators

A soft actuator is made of a flexible material that changes its shape in response to stimuli including mechanical, thermal, magnetic, and electrical. Soft actuators mainly deal with the robotics of humans rather than industry which is what most of the actuators are used for. For most actuators they are mechanically durable yet do not have an ability to adapt compared to soft actuators. The soft actuators apply to mainly safety and healthcare for humans which is why they are able to adapt to environments by disassembling their parts. [14] This is why the driven energy behind soft actuators deal with flexible materials like certain polymers and liquids that are harmless

The majority of the existing soft actuators are fabricated using multistep low yield processes such as micro-moulding, [15] solid freeform fabrication, [16] and mask lithography. [17] However, these methods require manual fabrication of devices, post processing/assembly, and lengthy iterations until maturity in the fabrication is achieved. To avoid the tedious and time-consuming aspects of the current fabrication processes, researchers are exploring an appropriate manufacturing approach for effective fabrication of soft actuators. Therefore, special soft systems that can be fabricated in a single step by rapid prototyping methods, such as 3D printing, are utilized to narrow the gap between the design and implementation of soft actuators, making the process faster, less expensive, and simpler. They also enable incorporation of all actuator components into a single structure eliminating the need to use external joints, adhesives, and fasteners.

Shape memory polymer (SMP) actuators are the most similar to our muscles, providing a response to a range of stimuli such as light, electrical, magnetic, heat, pH, and moisture changes. They have some deficiencies including fatigue and high response time that have been improved through the introduction of smart materials and combination of different materials by means of advanced fabrication technology. The advent of 3D printers has made a new pathway for fabricating low-cost and fast response SMP actuators. The process of receiving external stimuli like heat, moisture, electrical input, light or magnetic field by SMP is referred to as shape memory effect (SME). SMP exhibits some rewarding features such a low density, high strain recovery, biocompatibility, and biodegradability.

Photopolymers or light activated polymers (LAP) are another type of SMP that are activated by light stimuli. The LAP actuators can be controlled remotely with instant response and, without any physical contact, only with the variation of light frequency or intensity.

A need for soft, lightweight and biocompatible soft actuators in soft robotics has influenced researchers for devising pneumatic soft actuators because of their intrinsic compliance nature and ability to produce muscle tension.

Polymers such as dielectric elastomers (DE), ionic polymer–metal composites (IPMC), ionic electroactive polymers, polyelectrolyte gels, and gel-metal composites are common materials to form 3D layered structures that can be tailored to work as soft actuators. EAP actuators are categorized as 3D printed soft actuators that respond to electrical excitation as deformation in their shape.

Examples and applications

In engineering, actuators are frequently used as mechanisms to introduce motion, or to clamp an object so as to prevent motion. [18] In electronic engineering, actuators are a subdivision of transducers. They are devices which transform an input signal (mainly an electrical signal) into some form of motion.

Examples of actuators

Circular to linear conversion

Motors are mostly used when circular motions are needed, but can also be used for linear applications by transforming circular to linear motion with a lead screw or similar mechanism. On the other hand, some actuators are intrinsically linear, such as piezoelectric actuators. Conversion between circular and linear motion is commonly made via a few simple types of mechanism including:

Virtual instrumentation

In virtual instrumentation, actuators and sensors are the hardware complements of virtual instruments.

Performance metrics

Performance metrics for actuators include speed, acceleration, and force (alternatively, angular speed, angular acceleration, and torque), as well as energy efficiency and considerations such as mass, volume, operating conditions, and durability, among others.

Force

When considering force in actuators for applications, two main metrics should be considered. These two are static and dynamic loads. Static load is the force capability of the actuator while not in motion. Conversely, the dynamic load of the actuator is the force capability while in motion.

Speed

Speed should be considered primarily at a no-load pace, since the speed will invariably decrease as the load amount increases. The rate the speed will decrease will directly correlate with the amount of force and the initial speed.

Operating conditions

Actuators are commonly rated using the standard IP Code rating system. Those that are rated for dangerous environments will have a higher IP rating than those for personal or common industrial use.

Durability

This will be determined by each individual manufacturer, depending on usage and quality.

See also

Related Research Articles

<span class="mw-page-title-main">Valve</span> Flow control device

A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.

<span class="mw-page-title-main">Linear motor</span> Electric motor that produces a linear force

A linear motor is an electric motor that has had its stator and rotor "unrolled", thus, instead of producing a torque (rotation), it produces a linear force along its length. However, linear motors are not necessarily straight. Characteristically, a linear motor's active section has ends, whereas more conventional motors are arranged as a continuous loop.

<span class="mw-page-title-main">Starter (engine)</span> Device used to start an internal combustion engine

A starter is a device used to rotate (crank) an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. The starter can also be another internal-combustion engine in the case, for instance, of very large engines, or diesel engines in agricultural or excavation applications.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Rack and pinion</span> Type of linear actuator

A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert between rotational motion and linear motion: rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate.

<span class="mw-page-title-main">Steering</span> The control of the direction of motion of vehicles and other objects

Steering is the control of the direction of motion or the components that enable its control. Steering is achieved through various arrangements, among them ailerons for airplanes, rudders for boats, cylic tilting of rotors for helicopters, and many more.

<span class="mw-page-title-main">Fluid power</span> Use of fluids under pressure to generate, control, and transmit power

Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.

<span class="mw-page-title-main">Hydraulic machinery</span> Type of machine that uses liquid fluid power to perform work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.

<span class="mw-page-title-main">Piezoelectric motor</span>

A piezoelectric motor or piezo motor is a type of electric motor based on the change in shape of a piezoelectric material when an electric field is applied, as a consequence of the converse piezoelectric effect. An electrical circuit makes acoustic or ultrasonic vibrations in the piezoelectric material, most often lead zirconate titanate and occasionally lithium niobate or other single-crystal materials, which can produce linear or rotary motion depending on their mechanism. Examples of types of piezoelectric motors include inchworm motors, stepper and slip-stick motors as well as ultrasonic motors which can be further categorized into standing wave and travelling wave motors. Piezoelectric motors typically use a cyclic stepping motion, which allows the oscillation of the crystals to produce an arbitrarily large motion, as opposed to most other piezoelectric actuators where the range of motion is limited by the static strain that may be induced in the piezoelectric element.

Power steering is a system for reducing a driver's effort to turn a steering wheel of a motor vehicle, by using a power source to assist steering.

<span class="mw-page-title-main">Pneumatic motor</span> Compressed-air engine

A pneumatic motor, or compressed-air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed-air energy to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor, piston air motor, air turbine or gear type motor.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

<span class="mw-page-title-main">Hydraulic motor</span> Machine converting flow into rotation

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. This enables the direct control of flow rate and the consequential control of process quantities such as pressure, temperature, and liquid level.

<span class="mw-page-title-main">Valve actuator</span> Mechanism for opening and closing a valve

A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process. Actuators may be only to open and close the valve, or may allow intermediate positioning; some valve actuators include switches or other ways to remotely indicate the position of the valve.

An electrohydraulic servo valve (EHSV) is an electrically-operated valve that controls how hydraulic fluid is sent to an actuator. Servo valves are often used to control powerful hydraulic cylinders with a very small electrical signal. Servo valves can provide precise control of position, velocity, pressure, and force with good post-movement damping characteristics.

<span class="mw-page-title-main">Yaw system</span>

The yaw system of wind turbines is the component responsible for the orientation of the wind turbine rotor towards the wind.

<span class="mw-page-title-main">Rotary actuator</span> AE motor

A rotary actuator is an actuator that produces a rotary motion or torque.

<span class="mw-page-title-main">Soft robotics</span> Subfield of robotics

Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans.

In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field from electric current, and uses the magnetic field to create linear motion.

References

  1. Escudier, Marcel; Atkins, Tony (2019). "A Dictionary of Mechanical Engineering". Oxford Reference. doi:10.1093/acref/9780198832102.001.0001. ISBN   978-0-19-883210-2.
  2. Butterfield, Andrew J.; Szymanski, John, eds. (2018). "A Dictionary of Electronics and Electrical Engineering". Oxford Reference. doi:10.1093/acref/9780198725725.001.0001. ISBN   978-0-19-872572-5.
  3. Nesbitt, B. (2011). Handbook of Valves and Actuators: Valves Manual International. Elsevier Science. p. 2. ISBN   978-0-08-054928-6 . Retrieved 2021-11-11.
  4. Clarence W. de Silva. Mechatronics: An Integrated Approach (2005). CRC Press. p. 761.
  5. "What's the Difference Between Pneumatic, Hydraulic, and Electrical Actuators?". machinedesign.com. Archived from the original on 2016-04-23. Retrieved 2016-04-26.
  6. "The Role of Rack and Pinion Actuators in On-Off & Modulating Controls". Valve Magazine (Spring 2010). Valve Manufacturers Association.
  7. "Automax SuperNova Series Pneumatic Rack & Pinion Actuators" (PDF). Flowserve Corporation. Retrieved 7 July 2014.
  8. "What is a Pneumatic Actuator?". www.tech-faq.com. Archived from the original on 2018-02-21. Retrieved 2018-02-20.
  9. "Pneumatic Valve Actuators Information - IHS Engineering360". www.globalspec.com. Archived from the original on 2016-06-24. Retrieved 2016-04-26.
  10. Tisserand, Olivier. "How does an electric actuator work?". Archived from the original on 2018-02-21. Retrieved 2018-02-20.
  11. "What Are the Differences Between Linear and Rotary Actuators?". RoboticsTomorrow. Retrieved 2022-07-13.
  12. 1 2 "Rotary Actuator - an overview". ScienceDirect Topics. Retrieved 2022-07-13.
  13. "Ultra-compact: Valves with shape memory actuators". 24 March 2021.
  14. El-Atab, Nazek; Mishra, Rishabh B.; Al-Modaf, Fhad; Joharji, Lana; Alsharif, Aljohara A.; Alamoudi, Haneen; Diaz, Marlon; Qaiser, Nadeem; Hussain, Muhammad Mustafa (October 2020). "Soft Actuators for Soft Robotic Applications: A Review". Advanced Intelligent Systems. 2 (10): 2000128. doi: 10.1002/aisy.202000128 . hdl: 10754/664810 . ISSN   2640-4567. S2CID   224805628.
  15. Feng, Guo-Hua; Yen, Shih-Chieh (2015). "Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms". 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). pp. 1877–80. doi:10.1109/TRANSDUCERS.2015.7181316. ISBN   978-1-4799-8955-3. S2CID   7243537.
  16. Malone, Evan; Lipson, Hod (2006). "Freeform fabrication of ionomeric polymer-metal composite actuators". Rapid Prototyping Journal. 12 (5): 244–53. doi:10.1108/13552540610707004. S2CID   1172362.
  17. Kerdlapee, Pongsak; Wisitsoraat, Anurat; Phokaratkul, Ditsayuth; Leksakul, Komgrit; Phatthanakun, Rungreung; Tuantranont, Adisorn (2013). "Fabrication of electrostatic MEMS microactuator based on X-ray lithography with Pb-based X-ray mask and dry-film-transfer-to-PCB process". Microsystem Technologies. 20: 127–35. doi:10.1007/s00542-013-1816-x. S2CID   110234049.
  18. Shabestari, N. P. (2019). "Fabrication of a simple and easy-to-make piezoelectric actuator and its use as phase shifter in digital speckle pattern interferometry". Journal of Optics. 48 (2): 272–282. Bibcode:2019JOpt...48..272P. doi:10.1007/s12596-019-00522-4. S2CID   155531221.
  19. Sclater, N. (2007). Mechanisms and Mechanical Devices Sourcebook (4th ed.). McGraw-Hill.