Telescope mount

Last updated
1 meter Zeiss telescope at Merate Astronomical Observatory, Merate (LC), Italy. (South support) Zeiss di Merate - pilastro sud.jpg
1 meter Zeiss telescope at Merate Astronomical Observatory, Merate (LC), Italy. (South support)

A telescope mount is a mechanical structure which supports a telescope. Telescope mounts are designed to support the mass of the telescope and allow for accurate pointing of the instrument. Many sorts of mounts have been developed over the years, with the majority of effort being put into systems that can track the motion of the fixed stars as the Earth rotates.

Contents

Fixed mounts

Fixed telescope mounts are entirely fixed in one position, such as Zenith telescopes that point only straight up and the National Radio Astronomy Observatory's Green Bank fixed radio 'horn' built to observe Cassiopeia A. [1]

Fixed altitude mounts

Fixed-altitude mounts usually have the primary optics fixed at an altitude angle while rotating horizontally (in azimuth). They can cover the whole sky but only observe objects for the short time when that object passes a specific altitude and azimuth. [2]

Transit mounts

Transit mounts are single axis mounts fixed in azimuth while rotating in altitude, usually oriented on a north-south axis. This allows the telescope to view the whole sky, but only when the Earth's rotation allows the objects to cross (transit) through that narrow north-south line (the meridian). This type of mount is used in transit telescopes, designed for precision astronomical measurement. Transit mounts are also used to save on cost or where the instruments mass makes movement on more than one axis very difficult, such as large radio telescopes. [3]

Altazimuth mounts

William Herschel's 49-inch (1,200 mm) 40-foot telescope on an altazimuth mount. Herschel 40 foot.jpg
William Herschel's 49-inch (1,200 mm) 40-foot telescope on an altazimuth mount.

Altazimuth, altitude-azimuth, or alt-az mounts allow telescopes to be moved in altitude (up and down), or azimuth (side to side), as separate motions. This mechanically simple mount was used in early telescope designs and until the second half of the 20th century was used as a "less sophisticated" alternative to equatorial mounts since it did not allow tracking of the night sky. This meant until recently it was normally used with inexpensive commercial and hobby constructions. Since the invention of digital tracking systems, altazimuth mounts have come to be used in practically all modern large research telescopes. Digital tracking has also made it a popular telescope mount used in amateur astronomy. [4]

Besides the mechanical inability to easily follow celestial motion the altazimuth mount does have other limitations. The telescope's field-of-view rotates at varying speed as the telescope tracks, whilst the telescope body does not, requiring a system to counter-rotate the field of view when used for astrophotography or other types of astronomical imaging. [5] The mount also has blind spot or "zenith hole", a spot near the zenith where the tracking rate in the azimuth coordinate becomes too high to accurately follow equatorial motion (if the elevation is limited to +90 degrees). [6]

Alt-alt (altitude-altitude) mounts

A Baker-Nunn satellite-tracking camera on an altitude-altitude-azimuth mount. Baker-Nunn camera 001.JPG
A Baker-Nunn satellite-tracking camera on an altitude-altitude-azimuth mount.

Alt-alt mounts, or altitude-altitude mounts, are designs similar to horizontal equatorial yoke mounts or Cardan suspension gimbals. This mount is an alternative to the altazimuth mount that has the advantage of not having a blind spot near the zenith, and for objects near the celestial equator the field rotation is minimized. [7] It has the disadvantage of having all the mass, complexity, and engineering problems of its equatorial counterpart, so is only used in specialty applications such as satellite tracking. [6] These mounts may include a third azimuth axis (an altitude-altitude-azimuth mount) to rotate the entire mount into an orientation that allows smoother tracking.

Equatorial mounts

Equatorial mount (Stutzmontierung) devised by Alfred Jensch Stuetzmontierung.jpg
Equatorial mount (Stützmontierung) devised by Alfred Jensch

The equatorial mount has north-south "polar axis" tilted to be parallel to Earth's polar axis that allows the telescope to swing in an east-west arc, with a second axis perpendicular to that to allow the telescope to swing in a north-south arc. Slewing or mechanically driving the mount's polar axis in a counter direction to the Earth's rotation allows the telescope to accurately follow the motion of the night sky. Equatorial mounts come in different shapes, include German equatorial mounts (GEM in short), equatorial fork mounts, mixed variations on yoke or cross-axis mounts, and equatorial platforms such as the Poncet Platform.

Tilting the polar axis adds a level of complexity to the mount. Mechanical systems have to be engineered to support one or both ends of this axis (such as in fork or yoke mounts). Designs such as German equatorial or cross axis mounts also need large counter weights to counterbalance the mass of the telescope. Larger domes and other structures are also needed to cover the increased mechanical size and range of movement of equatorial mounts. Because of this, equatorial mounts become less viable in very large telescopes and have been pretty much replaced by altazimuth mounts for those applications.

Hexapod-Telescope

Instead of the classical mounting using two axes, the mirror is supported by six extendable struts (Stewart-Gough platform). This configuration allows moving the telescope in all six spatial degrees of freedom and also provides a strong structural integrity. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Equatorial coordinate system</span> Celestial coordinate system used to specify the positions of celestial objects

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the vernal equinox, and a right-handed convention.

<span class="mw-page-title-main">Horizontal coordinate system</span> Type of celestial coordinate system

The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles: altitude and azimuth. Therefore, the horizontal coordinate system is sometimes called as the az/el system, the alt/az system, or the alt-azimuth system, among others. In an altazimuth mount of a telescope, the instrument's two axes follow altitude and azimuth.

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects invisible to the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">Dobsonian telescope</span> Type of Newtonian telescope popularized by John Dobson

A Dobsonian telescope is an altazimuth-mounted Newtonian telescope design popularized by John Dobson in 1965 and credited with vastly increasing the size of telescopes available to amateur astronomers. Dobson's telescopes featured a simplified mechanical design that was easy to manufacture from readily available components to create a large, portable, low-cost telescope. The design is optimized for observing faint, deep-sky objects such as nebulae and galaxies. This type of observation requires a large objective diameter of relatively short focal length and portability for travel to less light-polluted locations.

<span class="mw-page-title-main">Anglo-Australian Telescope</span>

The Anglo-Australian Telescope (AAT) is a 3.9-metre equatorially mounted telescope operated by the Australian Astronomical Observatory and situated at the Siding Spring Observatory, Australia, at an altitude of a little over 1,100 m. In 2009, the telescope was ranked as having the fifth-highest-impact of the world's optical telescopes. In 2001–2003, it was considered the most scientifically productive 4-metre-class optical telescope in the world based on scientific publications using data from the telescope.

<span class="mw-page-title-main">Altazimuth mount</span> Support mechanism with rotation about the horizontal and vertical axes

An altazimuth mount or alt-azimuth mount is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth of the pointing direction of the instrument. Rotation about the horizontal axis varies the altitude angle of the pointing direction.

<span class="mw-page-title-main">Equatorial mount</span> Mounting system for camera or telescope

An equatorial mount is a mount for instruments that compensates for Earth's rotation by having one rotational axis, the polar axis, parallel to the Earth's axis of rotation. This type of mount is used for astronomical telescopes and cameras. The advantage of an equatorial mount lies in its ability to allow the instrument attached to it to stay fixed on any celestial object with diurnal motion by driving one axis at a constant speed. Such an arrangement is called a sidereal or clock drive. Equatorial mounts achieve this by aligning their rotational axis with the Earth, a process known as polar alignment.

<span class="mw-page-title-main">Zenith telescope</span> Type of telescope that points straight up

A zenith telescope is a type of telescope that is designed to point straight up at or near the zenith. They are used for precision measurement of star positions, to simplify telescope construction, or both.

<span class="mw-page-title-main">MMT Observatory</span> Part of the Fred Lawrence Whipple Observatory

The MMT Observatory (MMTO) is an astronomical observatory on the site of Fred Lawrence Whipple Observatory. The Whipple observatory complex is located on Mount Hopkins, Arizona, US in the Santa Rita Mountains. The observatory is operated by the University of Arizona and the Smithsonian Institution, and has a visitor center in nearby Amado, Arizona. The MMTO is the home of the MMT, which has a primary mirror 6.5 m in diameter. The name comes from the six smaller mirrors originally used before the single primary mirror was installed in 1998. The primary mirror has a special lightweight honeycomb design made by the University of Arizona's Steward Observatory Mirror Laboratory. The MMT is housed in a building which allows the walls and roof around the telescope to be completely rolled back, allowing it to cool down very quickly in order to improve observation.

A polar mount is a movable mount for satellite dishes that allows the dish to be pointed at many geostationary satellites by slewing around one axis. It works by having its slewing axis parallel, or almost parallel, to the Earth's polar axis so that the attached dish can follow, approximately, the geostationary orbit, which lies in the plane of the Earth's equator.

<span class="mw-page-title-main">Meridian circle</span> Astronomical instrument for timing of the passage of stars

The meridian circle is an instrument for timing of the passage of stars across the local meridian, an event known as a culmination, while at the same time measuring their angular distance from the nadir. These are special purpose telescopes mounted so as to allow pointing only in the meridian, the great circle through the north point of the horizon, the north celestial pole, the zenith, the south point of the horizon, the south celestial pole, and the nadir. Meridian telescopes rely on the rotation of the sky to bring objects into their field of view and are mounted on a fixed, horizontal, east–west axis.

<span class="mw-page-title-main">GoTo (telescopes)</span>

In amateur astronomy, "GoTo" refers to a type of telescope mount and related software that can automatically point a telescope at astronomical objects that the user selects. Both axes of a GoTo mount are driven by a motor and controlled by a computer. It may be either a microprocessor-based integrated controller or an external personal computer. This differs from the single-axis semi-automated tracking of a traditional clock-drive equatorial mount.

Polar alignment is the act of aligning the rotational axis of a telescope's equatorial mount or a sundial's gnomon with a celestial pole to parallel Earth's axis.

In spherical astronomy, the parallactic angle is the angle between the great circle through a celestial object and the zenith, and the hour circle of the object. It is usually denoted q. In the triangle zenith—object—celestial pole, the parallactic angle will be the position angle of the zenith at the celestial object. Despite its name, this angle is unrelated with parallax. The parallactic angle is zero or 180° when the object crosses the meridian.

<span class="mw-page-title-main">Infinite-axis telescope</span>

An infinite-axis telescope is a telescope that can move freely in all directions. Such telescopes can be mechanically simple hand-guided versions with the mounting serving only to carry the weight of the telescope although there are equatorial versions.

<span class="mw-page-title-main">Clock drive</span> Mechanism in a telescopes mount

In astronomy, a clock drive is a motor-controlled mechanism used to move an equatorial mounted telescope along one axis to keep the aim in exact sync with the apparent motion of the fixed stars on the celestial sphere.

<span class="mw-page-title-main">Equatorial platform</span>

An equatorial platform or equatorial table is an equatorial telescope mount in the form of a specially designed platform that allows any device sitting on it to track astronomical objects in the sky on an equatorial axis. They are used to give equatorial tracking to any device sitting on them, from small cameras up to entire observatory buildings. They are often used with altazimuth mounted telescopes, such as the common Dobsonian telescope type, to overcome that type of mount's inability to track the night sky. With careful polar alignment sub-arc second precision CCD imaging is entirely possible. Roeser Observatory, Luxembourg have contributed hundreds of astrometric measurements of Near Earth Asteroids to the Minor Planet Center using a home-built 20" Dobsonian telescope on an Osypowski equatorial platform.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

References

  1. "Calibration Horn Antenna".
  2. Pierre-Yves Bély, The design and construction of large optical telescopes, page 236
  3. Robin Michael Green, Spherical Astronomy, page 45
  4. Altazimuth Telescope Mount. Planetfacts.org. Accessed April 13, 2012.
  5. Altazimuth Mounts. Astronomics.com. Accessed April 13, 2012.
  6. 1 2 Bill Keel's Lecture Notes - Astronomical Techniques - Telescope Mountings
  7. La montatura alt-alt (The alt-alt mount), article in italian
  8. Chini, Rolf (2000). "The Hexapod Telescope -- A Never-ending Story". Reviews in Modern Astronomy 13: New Astrophysical Horizons. 13: 257. Bibcode:2000RvMA...13..257C.