Gimbal

Last updated
Illustration of a simple three-axis gimbal set; the center ring can be vertically fixed Gyroscope operation.gif
Illustration of a simple three-axis gimbal set; the center ring can be vertically fixed

A gimbal is a pivoted support that permits rotation of an object about an axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of the rotation of its support (e.g. vertical in the first animation). For example, on a ship, the gyroscopes, shipboard compasses, stoves, and even drink holders typically use gimbals to keep them upright with respect to the horizon despite the ship's pitching and rolling.

Contents

The gimbal suspension used for mounting compasses and the like is sometimes called a Cardan suspension after Italian mathematician and physicist Gerolamo Cardano (1501–1576) who described it in detail. However, Cardano did not invent the gimbal, nor did he claim to. The device has been known since antiquity, first described in the 3rd c. BC by Philo of Byzantium, although some modern authors support the view that it may not have a single identifiable inventor. [1] [2]

History

Cardan suspension in Villard de Honnecourt's sketchbook (ca. 1230) Villard de Honnecourt - Sketchbook - 17.jpg
Cardan suspension in Villard de Honnecourt's sketchbook (ca. 1230)
Early modern dry compass suspended by gimbals (1570) Kardanischer-Kompass.jpg
Early modern dry compass suspended by gimbals (1570)

The gimbal was first described by the Greek inventor Philo of Byzantium (280–220 BC). [3] [4] [5] [6] Philo described an eight-sided ink pot with an opening on each side, which can be turned so that while any face is on top, a pen can be dipped and inked — yet the ink never runs out through the holes of the other sides. This was done by the suspension of the inkwell at the center, which was mounted on a series of concentric metal rings so that it remained stationary no matter which way the pot is turned. [3]

In Ancient China, the Han dynasty (202 BC – 220 AD) inventor and mechanical engineer Ding Huan created a gimbal incense burner around 180 AD. [3] [7] [8] There is a hint in the writing of the earlier Sima Xiangru (179–117 BC) that the gimbal existed in China since the 2nd century BC. [9] There is mention during the Liang dynasty (502–557) that gimbals were used for hinges of doors and windows, while an artisan once presented a portable warming stove to Empress Wu Zetian (r. 690–705) which employed gimbals. [10] Extant specimens of Chinese gimbals used for incense burners date to the early Tang dynasty (618–907), and were part of the silver-smithing tradition in China. [11]

The authenticity of Philo's description of a cardan suspension has been doubted by some authors on the ground that the part of Philo's Pneumatica which describes the use of the gimbal survived only in an Arabic translation of the early 9th century. [3] Thus, as late as 1965, the sinologist Joseph Needham suspected Arab interpolation. [12] However, Carra de Vaux, author of the French translation which still provides the basis for modern scholars, [13] regards the Pneumatics as essentially genuine. [14] The historian of technology George Sarton (1959) also asserts that it is safe to assume the Arabic version is a faithful copying of Philo's original, and credits Philon explicitly with the invention. [15] So does his colleague Michael Lewis (2001). [16] In fact, research by the latter scholar (1997) demonstrates that the Arab copy contains sequences of Greek letters which fell out of use after the 1st century, thereby strengthening the case that it is a faithful copy of the Hellenistic original, [17] a view recently also shared by the classicist Andrew Wilson (2002). [18]

The ancient Roman author Athenaeus Mechanicus, writing during the reign of Augustus (30 BC–14 AD), described the military use of a gimbal-like mechanism, calling it "little ape" (pithêkion). When preparing to attack coastal towns from the sea-side, military engineers used to yoke merchant-ships together to take the siege machines up to the walls. But to prevent the shipborne machinery from rolling around the deck in heavy seas, Athenaeus advises that "you must fix the pithêkion on the platform attached to the merchant-ships in the middle, so that the machine stays upright in any angle". [19]

After antiquity, gimbals remained widely known in the Near East. In the Latin West, reference to the device appeared again in the 9th century recipe book called the Little Key of Painting' ( mappae clavicula ). [20] The French inventor Villard de Honnecourt depicts a set of gimbals in his sketchbook (see right). In the early modern period, dry compasses were suspended in gimbals.

Applications

In a set of three gimbals mounted together, each offers a degree of freedom: roll, pitch and yaw Gimbal 3 axes rotation.gif
In a set of three gimbals mounted together, each offers a degree of freedom: roll, pitch and yaw

Inertial navigation

In inertial navigation, as applied to ships and submarines, a minimum of three gimbals are needed to allow an inertial navigation system (stable table) to remain fixed in inertial space, compensating for changes in the ship's yaw, pitch, and roll. In this application, the inertial measurement unit (IMU) is equipped with three orthogonally mounted gyros to sense rotation about all axes in three-dimensional space. The gyro outputs are kept to a null through drive motors on each gimbal axis, to maintain the orientation of the IMU. To accomplish this, the gyro error signals are passed through "resolvers" mounted on the three gimbals, roll, pitch and yaw. These resolvers perform an automatic matrix transformation according to each gimbal angle, so that the required torques are delivered to the appropriate gimbal axis. The yaw torques must be resolved by roll and pitch transformations. The gimbal angle is never measured. Similar sensing platforms are used on aircraft.

In inertial navigation systems, gimbal lock may occur when vehicle rotation causes two of the three gimbal rings to align with their pivot axes in a single plane. When this occurs, it is no longer possible to maintain the sensing platform's orientation.[ citation needed ]

Rocket engines

In spacecraft propulsion, rocket engines are generally mounted on a pair of gimbals to allow a single engine to vector thrust about both the pitch and yaw axes; or sometimes just one axis is provided per engine. To control roll, twin engines with differential pitch or yaw control signals are used to provide torque about the vehicle's roll axis.

Photography and imaging

Man using gimbal for smartphone Gimbal 8jo WATANABEhachijo.jpg
Man using gimbal for smartphone
A Baker-Nunn satellite-tracking camera on an altitude-altitude-azimuth mount Baker-Nunn camera 001.JPG
A Baker-Nunn satellite-tracking camera on an altitude-altitude-azimuth mount

Gimbals are also used to mount everything from small camera lenses to large photographic telescopes.

In portable photography equipment, single-axis gimbal heads are used in order to allow a balanced movement for camera and lenses. [21] This proves useful in wildlife photography as well as in any other case where very long and heavy telephoto lenses are adopted: a gimbal head rotates a lens around its center of gravity, thus allowing for easy and smooth manipulation while tracking moving subjects.

Very large gimbal mounts in the form 2 or 3 axis altitude-altitude mounts [22] are used in satellite photography for tracking purposes.

Gyrostabilized gimbals which house multiple sensors are also used for airborne surveillance applications including airborne law enforcement, pipe and power line inspection, mapping, and ISR (intelligence, surveillance, and reconnaissance). Sensors include thermal imaging, daylight, low light cameras as well as laser range finder, and illuminators. [23]

Gimbal systems are also used in scientific optics equipment. For example, they are used to rotate a material sample along an axis to study their angular dependence of optical properties. [24]

Film and video

NEWTON S2 gimbal for remote control and 3-axis stabilization of a RED camera, Teradek lens motors and Angenieux lens NEWTON-S2-gimbal-RED-camera-Teradek lens-motors-and-Angeniuex-lens.jpg
NEWTON S2 gimbal for remote control and 3-axis stabilization of a RED camera, Teradek lens motors and Angénieux lens

Handheld 3-axis gimbals are used in stabilization systems designed to give the camera operator the independence of handheld shooting without camera vibration or shake. There are two versions of such stabilization systems: mechanical and motorized.

Mechanical gimbals have the sled, which includes the top stage where the camera is attached, the post which in most models can be extended, with the monitor and batteries at the bottom to counterbalance the camera weight. This is how the Steadicam stays upright, by simply making the bottom slightly heavier than the top, pivoting at the gimbal. This leaves the center of gravity of the whole rig, however heavy it may be, exactly at the operator's fingertip, allowing deft and finite control of the whole system with the lightest of touches on the gimbal.

Powered by three brushless motors, motorized gimbals have the ability to keep the camera level on all axes as the camera operator moves the camera. An inertial measurement unit (IMU) responds to movement and utilizes its three separate motors to stabilize the camera. With the guidance of algorithms, the stabilizer is able to notice the difference between deliberate movement such as pans and tracking shots from unwanted shake. This allows the camera to seem as if it is floating through the air, an effect achieved by a Steadicam in the past. Gimbals can be mounted to cars and other vehicles such as drones, where vibrations or other unexpected movements would make tripods or other camera mounts unacceptable. An example which is popular in the live TV broadcast industry, is the Newton 3-axis camera gimbal.

Marine chronometers

The rate of a mechanical marine chronometer is sensitive to its orientation. Because of this, chronometers were normally mounted on gimbals, in order to isolate them from the rocking motions of a ship at sea.

Gimbal lock

Gimbal with 3 axes of rotation. When two gimbals rotate around the same axis, the system loses one degree of freedom. Gimbal Lock Plane.gif
Gimbal with 3 axes of rotation. When two gimbals rotate around the same axis, the system loses one degree of freedom.

Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.

The word lock is misleading: no gimbal is restrained. All three gimbals can still rotate freely about their respective axes of suspension. Nevertheless, because of the parallel orientation of two of the gimbals' axes there is no gimbal available to accommodate rotation about one axis.

See also

Related Research Articles

<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Gyroscope</span> Device for measuring or maintaining the orientation and angular velocity

A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.

<span class="mw-page-title-main">Rudder</span> Control surface for fluid-dynamic steering in the yaw axis

A rudder is a primary control surface used to steer a ship, boat, submarine, hovercraft, airship, or other vehicle that moves through a fluid medium. On an airplane, the rudder is used primarily to counter adverse yaw and p-factor and is not the primary control used to turn the airplane. A rudder operates by redirecting the fluid past the hull or fuselage, thus imparting a turning or yawing motion to the craft. In basic form, a rudder is a flat plane or sheet of material attached with hinges to the craft's stern, tail, or afterend. Often rudders are shaped to minimize hydrodynamic or aerodynamic drag. On simple watercraft, a tiller—essentially, a stick or pole acting as a lever arm—may be attached to the top of the rudder to allow it to be turned by a helmsman. In larger vessels, cables, pushrods, or hydraulics may link rudders to steering wheels. In typical aircraft, the rudder is operated by pedals via mechanical linkages or hydraulics.

<span class="mw-page-title-main">Gimbal lock</span> Loss of one degree of freedom in a three-dimensional, three-gimbal mechanism

Gimbal lock is the loss of one degree of freedom in a multi-dimensional mechanism at certain alignments of the axes. In a three-dimensional three-gimbal mechanism, gimbal lock occurs when the axes of two of the gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.

<span class="mw-page-title-main">Euler angles</span> Description of the orientation of a rigid body

The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system.

The chain pump is type of a water pump in which several circular discs are positioned on an endless chain. One part of the chain dips into the water, and the chain runs through a tube, slightly bigger than the diameter of the discs. As the chain is drawn up the tube, water becomes trapped between the discs and is lifted to and discharged at the top. Chain pumps were used for centuries in the ancient Middle East, Europe, and China.

<span class="mw-page-title-main">Yi Xing</span> 8th-century Buddhist monk and astronomer

Yi Xing, born Zhang Sui, was a Chinese astronomer, Buddhist monk, inventor, mathematician, mechanical engineer, and philosopher during the Tang dynasty. His astronomical celestial globe featured a liquid-driven escapement, the first in a long tradition of Chinese astronomical clockworks.

Science in the ancient world encompasses the earliest history of science from the protoscience of prehistory and ancient history to late antiquity. In ancient times, culture and knowledge were passed through oral tradition. The development of writing further enabled the preservation of knowledge and culture, allowing information to spread accurately.

<span class="mw-page-title-main">Chain drive</span> Way of transmitting mechanical power

Chain drive is a way of transmitting mechanical power from one place to another. It is often used to convey power to the wheels of a vehicle, particularly bicycles and motorcycles. It is also used in a wide variety of machines besides vehicles.

<span class="mw-page-title-main">Su Song</span> Polymath (1020–1101)

Su Song, courtesy name Zirong, was a Chinese polymathic scientist and statesman. Excelling in a variety of fields, he was accomplished in mathematics, astronomy, cartography, geography, horology, pharmacology, mineralogy, metallurgy, zoology, botany, mechanical engineering, hydraulic engineering, civil engineering, invention, art, poetry, philosophy, antiquities, and statesmanship during the Song dynasty (960–1279).

<span class="mw-page-title-main">Song Yingxing</span>

Song Yingxing was a Chinese scientist and encyclopedist who lived during the late Ming Dynasty (1368–1644). He was the author of Tiangong Kaiwu, an encyclopedia that covered a wide variety of technical subjects, including the use of gunpowder weapons. The British biochemist, sinologist, and historian Joseph Needham called Song Yingxing "The Diderot of China."

<span class="mw-page-title-main">History of science and technology in China</span>

Ancient Chinese scientists and engineers made significant scientific innovations, findings and technological advances across various scientific disciplines including the natural sciences, engineering, medicine, military technology, mathematics, geology and astronomy.

Zhu Yu was a Chinese maritime historian during the Song dynasty. He retired in Huang Gang (黄岗) of the Hubei province, bought a country house and named it "Pingzhou". He called himself "Expert Vegetable Grower of Pingzhou (萍洲老圃)". Between 1111 and 1117 AD, Zhu Yu wrote the book Pingzhou Ketan, published in 1119 AD. It covered a wide variety of maritime subjects and issues in China at the time. His extensive knowledge of maritime engagements, technologies, and practices were because his father, Zhu Fu, was the Port Superintendent of Merchant Shipping for Guangzhou from 1094 until 1099 AD, whereupon he was elevated to the status of governor there and served in that office until 1102 AD.

Chinese exploration includes exploratory Chinese travels abroad, on land and by sea, from the travels of Han dynasty diplomat Zhang Qian into Central Asia during the 2nd century BC until the Ming dynasty treasure voyages of the 15th century that crossed the Indian Ocean and reached as far as East Africa.

<span class="mw-page-title-main">Mechanical counter</span> Digital counters using mechanical components

Mechanical counters are counters built using mechanical components. They typically consist of a series of disks mounted on an axle, with the digits zero through nine marked on their edge. The right most disk moves one increment with each event. Each disk except the left-most has a protrusion that, after the completion of one revolution, moves the next disk to the left one increment. Such counters have been used as odometers for bicycles and cars and in tape recorders and fuel dispensers and to control manufacturing processes. One of the largest manufacturers was the Veeder-Root company, and their name was often used for this type of counter. Mechanical counters can be made into electromechanical counters, that count electrical impulses, by adding a small solenoid.

<span class="mw-page-title-main">Inertial navigation system</span> Continuously computed dead reckoning

An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

<span class="mw-page-title-main">Science and technology of the Tang dynasty</span>

The Tang dynasty (618–907) of ancient China witnessed many advancements in Chinese science and technology, with various developments in woodblock printing, timekeeping, mechanical engineering, medicine, and structural engineering.

<span class="mw-page-title-main">Timeline of the Song dynasty</span>

This is a timeline of the Song dynasty (960–1279). The Song dynasty was founded by Zhao Kuangyin, posthumously known as Emperor Taizu of Song, who ended the period of division known as the Five Dynasties and Ten Kingdoms period. The Song dynasty is commonly separated into two historical periods, the Northern Song (960–1127) and the Southern Song (1127–1279), divided by the loss of the north to the Jurchen Jin dynasty (1115–1234). In 1279, the Mongol Yuan dynasty conquered the Song.

<span class="mw-page-title-main">Timeline of the Five Dynasties and Ten Kingdoms</span>

This is a timeline of the Five Dynasties and Ten Kingdoms (907–979), which followed the collapse of the Tang dynasty in 907 AD. The Five Dynasties refer to the succession of dynasties which ruled northern China following the Tang collapse while the Ten Kingdoms, with the exception of Northern Han, ruled in southern China. This era of division ended in 979 AD with the rise of the Song dynasty under Emperor Taizu of Song, although the Song would never reconquer the northern territory lost to the Khitans, collectively known as the Sixteen Prefectures.

This is a timeline of the Yuan dynasty (1271–1368). The Yuan dynasty was founded by the Mongol warlord Kublai Khan in 1271 and conquered the Song dynasty in 1279. The Yuan dynasty lasted nearly a hundred years before a series of rebellions known as the Red Turban Rebellion resulted in its collapse in 1368 and the rise of the Ming dynasty.

References

  1. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. Page 229.
  2. Francis C. Moon, The Machines of Leonardo da Vinci and Franz Reuleaux: Kinematics of Machines from the Renaissance to the 20th century, p.314, Springer, 2007 ISBN   1-4020-5598-6.
  3. 1 2 3 4 Sarton, George (1959). A History of Science: Hellenistic Science and Culture in the Last Three centuries B.C. Cambridge: Harvard University Press. pp. 349–350.
  4. Carter, Ernest Frank (1967). Dictionary of Inventions and Discoveries . Philosophical Library. p.  74.
  5. Seherr-Thoss, Hans-Christoph; Schmelz, Friedrich; Aucktor, Erich (2006). Universal Joints and Driveshafts: Analysis, Design, Applications. Springer. p. 1. ISBN   978-3-540-30169-1.
  6. Krebs, Robert E.; Krebs, Carolyn A. (2003). Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Ancient World. Greenwood Press. p. 216. ISBN   978-0-313-31342-4.
  7. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. p.233.
  8. Handler, Sarah (2001). Austere Luminosity of Chinese Classical Furniture. University of California Press (published October 1, 2001). p. 308. ISBN   978-0520214842.
  9. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. pp.233–234.
  10. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. p.234.
  11. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. pp.234–235.
  12. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. p.236.
  13. Hill, D. R. (1977). History of Technology. Vol. Part II. p. 75.
  14. Carra de Vaux: "Le livre des appareils pneumatiques et des machines hydrauliques de Philon de Byzance d'après les versions d'Oxford et de Constantinople", Académie des Inscriptions et des Belles Artes: notice et extraits des mss. de la Bibliothèque nationale, Paris 38 (1903), pp.27-235
  15. Sarton, George. (1959). A History of Science: Hellenistic Science and Culture in the Last Three centuries B.C. New York: The Norton Library, Norton & Company Inc. SBN 393005267. pp.343–350.
  16. Lewis, M. J. T. (2001). Surveying Instruments of Greece and Rome. Cambridge University Press. p. 76 at Fn. 45. ISBN   978-0-521-79297-4.
  17. Lewis, M. J. T. (1997). Millstone and Hammer: the Origins of Water Power. pp. 26–36.
  18. Wilson, Andrew (2002). "Machines, Power and the Ancient Economy". The Journal of Roman Studies. 92 (7): 1–32. doi:10.1017/S0075435800032135.
  19. Athenaeus Mechanicus, "On Machines" ("Peri Mēchanēmatōn"), 32.1-33.3
  20. Needham, Joseph. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. pp.229, 231.
  21. "3-Axis Handheld GoPro Gimbals". gimbalreview.com. GimbalReview. 2017. Retrieved 7 May 2017.
  22. "Article". Soviet Journal of Optical Technology. 43 (3). Optical Society of America, American Institute of Physics: 119. 1976.
  23. Dietsch, Roy (2013). Airborne Gimbal Camera – Interface Guide.
  24. Bihari, Nupur; Dash, Smruti Prasad; Dhankani, Karankumar C.; Pearce, Joshua M. (2018-12-01). "3-D printable open source dual axis gimbal system for optoelectronic measurements" (PDF). Mechatronics. 56: 175–187. doi:10.1016/j.mechatronics.2018.07.005. ISSN   0957-4158. S2CID   115286364.