Thrust vectoring

Last updated
3D thrust vectoring nozzle on a Sukhoi Su-35S Sukhoi Su-35S 07 RED PAS 2013 07 cutout.jpg
3D thrust vectoring nozzle on a Sukhoi Su-35S
Three experimental thrust vectoring aircraft in flight; from left to right, F-18 HARV, X-31, and F-16 MATV 3 three thrust-vectoring aircraft.jpg
Three experimental thrust vectoring aircraft in flight; from left to right, F-18 HARV, X-31, and F-16 MATV

Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket, or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.


In rocketry and ballistic missiles that fly outside the atmosphere, aerodynamic control surfaces are ineffective, so thrust vectoring is the primary means of attitude control.

For aircraft, the method was originally envisaged to provide upward vertical thrust as a means to give aircraft vertical (VTOL) or short (STOL) takeoff and landing ability. Subsequently, it was realized that using vectored thrust in combat situations enabled aircraft to perform various maneuvers not available to conventional-engined planes. To perform turns, aircraft that use no thrust vectoring must rely on aerodynamic control surfaces only, such as ailerons or elevator; aircraft with vectoring must still use control surfaces, but to a lesser extent.

In missile literature originating from Russian sources, [1] thrust vectoring is often referred to as gas-dynamic steering or gas-dynamic control.

Thrust vectoring methods

Rockets and ballistic missiles

Moments generated by different thrust gimbal angles En Gimbaled thrust diagram.svg
Moments generated by different thrust gimbal angles
Animation of the motion of a rocket as the thrust is vectored by actuating the nozzle Gimbaled thrust animation.gif
Animation of the motion of a rocket as the thrust is vectored by actuating the nozzle
Graphite exhaust vanes on a V-2 rocket motor's nozzle Antwerp V-2.jpg
Graphite exhaust vanes on a V-2 rocket motor's nozzle

Nominally, the line of action of the thrust vector of a rocket nozzle passes through the vehicle's center of mass, generating zero net moment about the mass center. It is possible to generate pitch and yaw moments by deflecting the main rocket thrust vector so that it does not pass through the mass center. Because the line of action is generally oriented nearly parallel to the roll axis, roll control usually requires the use of two or more separately hinged nozzles or a separate system altogether, such as fins, or vanes in the exhaust plume of the rocket engine, deflecting the main thrust. Thrust vector control (TVC) is only possible when the propulsion system is creating thrust; separate mechanisms are required for attitude and flight path control during other stages of flight.

Thrust vectoring can be achieved by four basic means: [2] [3]

Gimbaled thrust

Thrust vectoring for many liquid rockets is achieved by gimbaling the whole engine. This involves moving the entire combustion chamber and outer engine bell as on the Titan II's twin first-stage motors, or even the entire engine assembly including the related fuel and oxidizer pumps. The Saturn V and the Space Shuttle used gimbaled engines. [2]

A later method developed for solid propellant ballistic missiles achieves thrust vectoring by deflecting only the nozzle of the rocket using electric actuators or hydraulic cylinders. The nozzle is attached to the missile via a ball joint with a hole in the center, or a flexible seal made of a thermally resistant material, the latter generally requiring more torque and a higher power actuation system. The Trident C4 and D5 systems are controlled via hydraulically actuated nozzle. The STS SRBs used gimbaled nozzles. [4]

Propellant injection

Another method of thrust vectoring used on solid propellant ballistic missiles is liquid injection, in which the rocket nozzle is fixed, but a fluid is introduced into the exhaust flow from injectors mounted around the aft end of the missile. If the liquid is injected on only one side of the missile, it modifies that side of the exhaust plume, resulting in different thrust on that side and an asymmetric net force on the missile. This was the control system used on the Minuteman II and the early SLBMs of the United States Navy.

Vernier thrusters

An effect similar to thrust vectoring can be produced with multiple vernier thrusters, small auxiliary combustion chambers which lack their own turbopumps and can gimbal on one axis. These were used on the Atlas and R-7 missiles and are still used on the Soyuz rocket, which is descended from the R-7, but are seldom used on new designs due to their complexity and weight. These are distinct from Reaction control system thrusters, which are fixed and independent rocket engines used for maneuvering in space.

Exhaust vanes

One of the earliest methods of thrust vectoring in rocket engines was to place vanes in the engine's exhaust stream. These exhaust vanes or jet vanes allow the thrust to be deflected without moving any parts of the engine, but reduce the rocket's efficiency. They have the benefit of allowing roll control with only a single engine, which nozzle gimbaling does not. The V-2 used graphite exhaust vanes and aerodynamic vanes, as did the Redstone, derived from the V-2. The Sapphire and Nexo rockets of the amateur group Copenhagen Suborbitals provide a modern example of jet vanes. Jet vanes must be made of a refractory material or actively cooled to prevent them from melting. Sapphire used solid copper vanes for copper's high heat capacity and thermal conductivity, and Nexo used graphite for its high melting point, but unless actively cooled, jet vanes will undergo significant erosion. This, combined with jet vanes' inefficiency, mostly precludes their use in new rockets.

Tactical missiles and small projectiles

Some smaller sized atmospheric tactical missiles, such as the AIM-9X Sidewinder, eschew flight control surfaces and instead use mechanical vanes to deflect motor exhaust to one side.

Thrust vectoring is a way to reduce a missile's minimum range, before which it cannot reach a speed high enough for its small aerodynamic surfaces to produce effective maneuvering. For example, anti-tank missiles such as the ERYX and the PARS 3 LR use thrust vectoring for this reason. [5]

Some other projectiles that use thrust-vectoring:


Most currently operational vectored thrust aircraft use turbofans with rotating nozzles or vanes to deflect the exhaust stream. This method can successfully deflect thrust through as much as 90 degrees, relative to the aircraft centerline. However, the engine must be sized for vertical lift, rather than normal flight, which results in a weight penalty. Afterburning (or Plenum Chamber Burning, PCB, in the bypass stream) is difficult to incorporate and is impractical for take-off and landing thrust vectoring, because the very hot exhaust can damage runway surfaces. Without afterburning it is hard to reach supersonic flight speeds. A PCB engine, the Bristol Siddeley BS100, was cancelled in 1965.

Tiltrotor aircraft vector thrust via rotating turboprop engine nacelles. The mechanical complexities of this design are quite troublesome, including twisting flexible internal components and driveshaft power transfer between engines. Most current tiltrotor designs feature two rotors in a side-by-side configuration. If such a craft is flown in a way where it enters a vortex ring state, one of the rotors will always enter slightly before the other, causing the aircraft to perform a drastic and unplanned roll.

The pre-World War 1, British Army airship Delta, fitted with swiveling propellers Airship Delta.jpg
The pre-World War 1, British Army airship Delta, fitted with swiveling propellers

Thrust vectoring is also used as a control mechanism for airships. An early application was the British Army airship Delta, which first flew in 1912. [8] It was later used on HMA (His Majesty's Airship) No. 9r, a British rigid airship that first flew in 1916 [9] and the twin 1930s-era U.S. Navy rigid airships USS Akron and USS Macon that were used as airborne aircraft carriers, and a similar form of thrust vectoring is also particularly valuable today for the control of modern non-rigid airships. In this use, most of the load is usually supported by buoyancy and vectored thrust is used to control the motion of the aircraft. The first airship that used a control system based on pressurized air was Enrico Forlanini's Omnia Dir in 1930s.

A design for a jet incorporating thrust vectoring was submitted in 1949 to the British Air Ministry by Percy Walwyn; Walwyn's drawings are preserved at the National Aerospace Library at Farnborough. [10] Official interest was curtailed when it was realised that the designer was a patient in a mental hospital.[ citation needed ]

Now being researched, Fluidic Thrust Vectoring (FTV) diverts thrust via secondary fluidic injections. [11] Tests show that air forced into a jet engine exhaust stream can deflect thrust up to 15 degrees. Such nozzles are desirable for their lower mass and cost (up to 50% less), inertia (for faster, stronger control response), complexity (mechanically simpler, fewer or no moving parts or surfaces, less maintenance), and radar cross section for stealth. This will likely be used in many unmanned aerial vehicle (UAVs), and 6th generation fighter aircraft.

Vectoring nozzles

Thrust-vectoring flight control (TVFC) is obtained through deflection of the aircraft jets in some or all of the pitch, yaw and roll directions. In the extreme, deflection of the jets in yaw, pitch and roll creates desired forces and moments enabling complete directional control of the aircraft flight path without the implementation of the conventional aerodynamic flight controls (CAFC). TVFC can also be used to hold stationary flight in areas of the flight envelope where the main aerodynamic surfaces are stalled. [12] TVFC includes control of STOVL aircraft during the hover and during the transition between hover and forward speeds below 50 knots where aerodynamic surfaces are ineffective. [13]

When vectored thrust control uses a single propelling jet, as with a single-engined aircraft, the ability to produce rolling moments may not be possible. An example is an afterburning supersonic nozzle where nozzle functions are throat area, exit area, pitch vectoring and yaw vectoring. These functions are controlled by four separate actuators. [12] A simpler variant using only three actuators would not have independent exit area control. [12]

When TVFC is implemented to complement CAFC, agility and safety of the aircraft are maximized. Increased safety may occur in the event of malfunctioning CAFC as a result of battle damage. [12]

To implement TVFC a variety of nozzles both mechanical and fluidic may be applied. This includes convergent and convergent-divergent nozzles that may be fixed or geometrically variable. It also includes variable mechanisms within a fixed nozzle, such as rotating cascades [14] and rotating exit vanes. [15] Within these aircraft nozzles, the geometry itself may vary from two-dimensional (2-D) to axisymmetric or elliptic. The number of nozzles on a given aircraft to achieve TVFC can vary from one on a CTOL aircraft to a minimum of four in the case of STOVL aircraft. [13]

Thrust-vectoring nozzle definitions

It is necessary to clarify some definitions used in thrust-vectoring nozzle design.

Nozzles with circular exits.
Conventional aerodynamic flight control (CAFC)
Pitch, yaw-pitch, yaw-pitch-roll or any other combination of aircraft control through aerodynamic deflection using rudders, flaps, elevators and/or ailerons.
Converging-diverging nozzle (C-D)
Generally used on supersonic jet aircraft where nozzle pressure ratio (npr) > 3. The engine exhaust is expanded through a converging section to achieve Mach 1 and then expanded through a diverging section to achieve supersonic speed at the exit plane, or less at low npr. [16]
Converging nozzle
Generally used on subsonic and transonic jet aircraft where npr < 3. The engine exhaust is expanded through a converging section to achieve Mach 1 at the exit plane, or less at low npr. [16]
Effective Vectoring Angle
The average angle of deflection of the jet stream centerline at any given moment in time.
Fixed nozzle
A thrust-vectoring nozzle of invariant geometry or one of variant geometry maintaining a constant geometric area ratio, during vectoring. This will also be referred to as a civil aircraft nozzle and represents the nozzle thrust vectoring control applicable to passenger, transport, cargo and other subsonic aircraft.
Fluidic thrust vectoring
The manipulation or control of the exhaust flow with the use of a secondary air source, typically bleed air from the engine compressor or fan. [17]
Geometric vectoring angle
Geometric centerline of the nozzle during vectoring. For those nozzles vectored at the geometric throat and beyond, this can differ considerably from the effective vectoring angle.
Three-bearing swivel duct nozzle (3BSD [13] )
Three angled segments of engine exhaust duct rotate relative to one another about duct centreline to produce nozzle thrust axis pitch and yaw. [18]
Three-dimensional (3-D)
Nozzles with multi-axis or pitch and yaw control. [12]
Thrust vectoring (TV)
The deflection of the jet away from the body-axis through the implementation of a flexible nozzle, flaps, paddles, auxiliary fluid mechanics or similar methods.
Thrust-vectoring flight control (TVFC)
Pitch, yaw-pitch, yaw-pitch-roll, or any other combination of aircraft control through deflection of thrust generally issuing from an air-breathing turbofan engine.
Two-dimensional (2-D)
Nozzles with square or rectangular exits. In addition to the geometrical shape 2-D can also refer to the degree-of-freedom (DOF) controlled which is single axis, or pitch-only, in which case round nozzles are included. [12]
Two-dimensional converging-diverging (2-D C-D)
Square, rectangular, or round supersonic nozzles on fighter aircraft with pitch-only control.
Variable nozzle
A thrust-vectoring nozzle of variable geometry maintaining a constant, or allowing a variable, effective nozzle area ratio, during vectoring. This will also be referred to as a military aircraft nozzle as it represents the nozzle thrust vectoring control applicable to fighter and other supersonic aircraft with afterburning. The convergent section may be fully controlled with the divergent section following a pre-determined relationship to the convergent throat area. [12] Alternatively, the throat area and the exit area may be controlled independently, to allow the divergent section to match the exact flight condition. [12]

Methods of nozzle control

Geometric area ratios
Maintaining a fixed geometric area ratio from the throat to the exit during vectoring. The effective throat is constricted as the vectoring angle increases.
Effective area ratios
Maintaining a fixed effective area ratio from the throat to the exit during vectoring. The geometric throat is opened as the vectoring angle increases.
Differential area ratios
Maximizing nozzle expansion efficiency generally through predicting the optimal effective area as a function of the mass flow rate.

Methods of thrust vectoring

Type I
Nozzles whose baseframe mechanically is rotated before the geometrical throat.
Type II
Nozzles whose baseframe is mechanically rotated at the geometrical throat.
Type III
Nozzles whose baseframe is not rotated. Rather, the addition of mechanical deflection post-exit vanes or paddles enables jet deflection.
Type IV
Jet deflection through counter-flowing or co-flowing (by shock-vector control or throat shifting) [17] auxiliary jet streams. Fluid-based jet deflection using secondary fluidic injection. [17]
Additional type
Nozzles whose upstream exhaust duct consists of wedge-shaped segments which rotate relative to each other about the duct centreline. [13] [18] [19]

Operational examples


Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle Vector-nozzle-sea-harrier-jet-common.jpg
Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle

An example of 2D thrust vectoring is the Rolls-Royce Pegasus engine used in the Hawker Siddeley Harrier, as well as in the AV-8B Harrier II variant.

Widespread use of thrust vectoring for enhanced maneuverability in Western production-model fighter aircraft didn't occur until the deployment of the Lockheed Martin F-22 Raptor fifth-generation jet fighter in 2005, with its afterburning, 2D thrust-vectoring Pratt & Whitney F119 turbofan. [20]

The Lockheed Martin F-35 Lightning II while using a conventional afterburning turbofan (Pratt & Whitney F135) to facilitate supersonic operation, the F-35B variant, developed for joint usage by the US Marine Corps, Royal Air Force, Royal Navy, and Italian Navy, also incorporates a vertically mounted, low-pressure shaft-driven remote fan, which is driven through a clutch during landing from the engine. Both the exhaust from this fan and the main engine's fan are deflected by thrust vectoring nozzles, to provide the appropriate combination of lift and propulsive thrust. It is not conceived for enhanced maneuverability in combat, only for VTOL operation, and the F-35A and F-35C do not use thrust vectoring at all.

The Sukhoi Su-30MKI, produced by India under license at Hindustan Aeronautics Limited, is in active service with the Indian Air Force. The TVC makes the aircraft highly maneuverable, capable of near-zero airspeed at high angles of attack without stalling, and dynamic aerobatics at low speeds. The Su-30MKI is powered by two Al-31FP afterburning turbofans. The TVC nozzles of the MKI are mounted 32 degrees outward to longitudinal engine axis (i.e. in the horizontal plane) and can be deflected ±15 degrees in the vertical plane. This produces a corkscrew effect, greatly enhancing the turning capability of the aircraft. [21]

A few computerized studies add thrust vectoring to extant passenger airliners, like the Boeing 727 and 747, to prevent catastrophic failures, while the experimental X-48C may be jet-steered in the future. [22]


Examples of rockets and missiles which use thrust vectoring include both large systems such as the Space Shuttle Solid Rocket Booster (SRB), S-300P (SA-10) surface-to-air missile, UGM-27 Polaris nuclear ballistic missile and RT-23 (SS-24) ballistic missile and smaller battlefield weapons such as Swingfire.

The principles of air thrust vectoring have been recently adapted to military sea applications in the form of fast water-jet steering that provide super-agility. Examples are the fast patrol boat Dvora Mk-III, the Hamina class missile boat and the US Navy's Littoral combat ships. [22]

List of vectored thrust aircraft

Thrust vectoring can convey two main benefits: VTOL/STOL, and higher maneuverability. Aircraft are usually optimized to maximally exploit one benefit, though will gain in the other.

For VTOL ability

The Harrier--the world's first operational fighter jet with thrust vectoring, enabling VTOL capabilities BAe Harrier GR9 ZG502 landing arp.jpg
The Harrier—the world's first operational fighter jet with thrust vectoring, enabling VTOL capabilities
GE Axisymmetric Vectoring Exhaust Nozzle, used on the F-16 MATV Iris vectoring nozzle.jpg
GE Axisymmetric Vectoring Exhaust Nozzle, used on the F-16 MATV

For higher maneuverability

Vectoring in two dimensions

Vectoring in three dimensions


See also

Related Research Articles

Aircraft Vehicle that is able to fly by gaining support from the air

An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors and hot air balloons.

Ramjet Jet engine designed to operate at supersonic speeds

A ramjet, sometimes referred to as a flying stovepipe or an athodyd, is a form of airbreathing jet engine that uses the engine's forward motion to compress incoming air without an axial compressor or a centrifugal compressor. Because ramjets cannot produce thrust at zero airspeed, they cannot move an aircraft from a standstill. A ramjet-powered vehicle, therefore, requires an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3. This type of engine can operate up to speeds of Mach 6.


Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction, to be applied to that system. The force applied on a surface in a direction perpendicular or normal to the surface is also called thrust. Force, and thus thrust, is measured using the International System of Units (SI) in newtons, and represents the amount needed to accelerate 1 kilogram of mass at the rate of 1 meter per second per second. In mechanical engineering, force orthogonal to the main load is referred to as static thrust.

Turbofan Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to accelerate air rearwards. Thus, whereas all the air taken in by a turbojet passes through the turbine, in a turbofan some of that air bypasses the turbine. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

The plug nozzle is a type of nozzle which includes a centerbody or plug around which the working fluid flows. Plug nozzles have applications in aircraft, rockets, and numerous other fluid flow devices.

Flight Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

Rocket engine Reaction engine using stored propellant(s) to produce thrust

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidizer, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.


A nozzle is a device designed to control the direction or characteristics of a fluid flow as it exits an enclosed chamber or pipe.

Afterburner Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. Afterburning injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of very high fuel consumption which limits its use to short periods. This aircraft application of reheat contrasts with the meaning and implementation of reheat applicable to gas turbines driving electrical generators and which reduces fuel consumption.

Sukhoi Su-37 Experimental thrust-vectoring version of the Su-35 fighter aircraft

The Sukhoi Su-37 was a single-seat twin-engine aircraft designed by the Sukhoi Design Bureau that served as a technology demonstrator. It allowed for the need to enhance pilot control of the Su-27M, which was a further development of the Su-27. The sole aircraft had originally been built as the eleventh Su-27M (T10M-11) by the Komsomolsk-on-Amur Aircraft Production Association before having its thrust-vectoring nozzles installed. In addition, it was modified with updated flight- and weapons-control systems. The aircraft made its maiden flight in April 1996. Throughout the flight-test program, the Su-37 demonstrated its supermanoeuvrability at air shows, performing manoeuvres such as a 360-degree somersault. The aircraft crashed in December 2002 due to structural failure. The Su-37 did not enter production; despite a report in 1998 which claimed that Sukhoi had built a second Su-37 using the twelfth Su-27M airframe, T10M-11 remained the sole prototype. Sukhoi had instead applied the aircraft's systems to the design bureau's other fighter designs.

Pratt & Whitney J58

The Pratt & Whitney J58 was an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet with a unique compressor bleed to the afterburner which gave increased thrust at high speeds. Because of the wide speed range of the aircraft the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, being gas generator, from a jet engine.

The Aggregat series was a set of ballistic missile designs developed in 1933–45 by a research program of Nazi Germany's Armed Forces (Wehrmacht). Its greatest success was the A4, more commonly known as the V-2.

Gimbaled thrust

Gimbaled thrust is the system of thrust vectoring used in most rockets, including the Space Shuttle, the Saturn V lunar rockets, and the Falcon 9.

Rocket engine nozzle

A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate the combustion gases produced by burning propellants so that the exhaust gases exit the nozzle at hypersonic velocities.

Jet damping or thrust damping is the effect of rocket exhaust removing energy from the transverse angular motion of a rocket. If a rocket has pitch or yaw motion then the exhaust must be accelerated laterally as it flows down the exhaust tube and nozzle. Once the exhaust leaves the nozzle this lateral momentum is lost to the vehicle and thus serves to damp the lateral oscillations. The jet damping is stabilizing as long as the distance from the instantaneous spacecraft center of mass to the nozzle exit plane exceeds the instantaneous transverse radius of gyration. Most rocket or missile configurations meet this criteria and the jet damping has a dynamic stabilizing effect. The jet damping torque rotates at nutation frequency in the spacecraft frame.

Supermaneuverability is the capability of fighter aircraft to execute tactical maneuvers that are not possible with purely aerodynamic mechanisms. Such maneuvers can use controlled side-slipping and angles of attack beyond maximum lift.

Rolls-Royce LiftSystem

The Rolls-Royce LiftSystem, together with the F135 engine, is an aircraft propulsion system designed for use in the STOVL variant of the F-35 Lightning II. The complete system, known as the Integrated Lift Fan Propulsion System (ILFPS), was awarded the Collier Trophy in 2001.

British Aerospace P.1216

The British Aerospace (BAe) P.1216 was a planned Advanced Short Take Off/Vertical Landing (ASTOVL) supersonic aircraft from the 1980s. It was designed by the former Hawker design team at Kingston upon Thames, Surrey, England that created the Harrier Jump Jet family of aircraft.

The familiar study of jet aircraft treats jet thrust with a "black box" description which only looks at what goes into the jet engine, air and fuel, and what comes out, exhaust gas and an unbalanced force. This force, called thrust, is the sum of the momentum difference between entry and exit and any unbalanced pressure force between entry and exit, as explained in "Thrust calculation".


  1. "AA-11 ARCHER R-73" . Retrieved 2014-03-27.
  2. 1 2 George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, 7th Edition.
  3. Michael D. Griffin and James R. French, Space Vehicle Design, Second Edition.
  4. "Reusable Solid Rocket Motor—Accomplishments, Lessons, and a Culture of Success" (PDF). Retrieved February 26, 2015.
  5. 1 2 "Anti-tank guided missile developments" . Retrieved 2014-03-27.
  6. "Combat Vehicle Tor 9A330". State company "UKROBORONSERVICE". Retrieved 2014-03-27.
  7. "S-400 SA-20 Triumf". Federation of American Scientists. Retrieved 2014-03-27.
  8. Mowthorpe, Ces (1998). Battlebags: British Airships of the First World War. Wrens Park. p. 11. ISBN   0-905778-13-8.
  9. Abbott, Patrick (1989). The British Airship at War. Terence Dalton. p. 84. ISBN   0-86138-073-8.
  10. "STOCK IMAGE - A 1949 jet deflection vectored-thrust propulsion concept by". Diomedia.
  11. P. J. Yagle; D. N. Miller; K. B. Ginn; J. W. Hamstra (2001). "Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles". Journal of Engineering for Gas Turbines and Power. 123 (3): 502–508. doi:10.1115/1.1361109.
  12. 1 2 3 4 5 6 7 8 "Thrust Vectoring Nozzle for Modern Military Aircraft" Daniel Ikaza, ITP, presented at NATO R&T Organization Symposium, Braunschweig, Germany, 8–11 May 2000
  13. 1 2 3 4 "F-35B Integrated Flight Propulsion Control Development" Walker, Wurth, Fuller, AIAA 2013-44243, AIAA Aviation, August 12–14, 2013, Los Angeles, CA 2013 International Powered Lift Conference"
  14. "The X-Planes, Jay Miller, Aerofax Inc. for Orion Books, ISBN   0-517-56749-0, Chapter 18, The Bell X-14
  15. "Propulsion System For A Vertical And Short Takeoff And Landing Aircraft" Bevilaqua and Shumpert, U.S. Patent Number 5,209,428
  16. 1 2 "Nozzle Selection and Design Criteria" Gambell, Terrell, DeFrancesco, AIAA 2004-3923
  17. 1 2 3 "Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft application" Flamme, Deere, Mason, Berrier, Johnson,
  18. 1 2 "F-35B Lightning II Three-Bearing Swivel Nozzle - Code One Magazine".
  19. "Variable Vectoring Nozzle For Jet Propulsion Engines" Johnson, U.S. Patent 3,260,049
  20. "F-22 Raptor fact sheet." U.S. Air Force, March 2009. Retrieved: 10 July 2014.
  21. "Air Attack - Fighters and more". Archived from the original on 2010-09-17.
  22. 1 2 Gal-Or, Benjamin (2011). "Future Jet Technologies". International Journal of Turbo and Jet Engines. online. 28: 1–29. ISSN   2191-0332.
  23. 1 2 Sweetmano, Bill (1999). Joint Strike Fighter: Boeing X-32 vs Lockheed Martin X-35. Enthusiast Color Series. MBI. ISBN   0-7603-0628-1.
  24. Barham, Robert (June 1994). "Thrust Vector Aided Maneuvering of the YF-22 Advanced Tactical Fighter Prototype". AIAA Biennial Flight Test Conference Proceedings. Hilton Head, SC. AIAA-94-2105-CP. Retrieved 14 May 2020.

8. Wilson, Erich A., "An Introduction to Thrust-Vectored Aircraft Nozzles", ISBN   978-3-659-41265-3