STOVL

Last updated

A Sea Harrier launches from the flight deck of HMS Illustrious in 2001 FA2 Sea Harrier Launches from HMS Illustrious MOD 45139505.jpg
A Sea Harrier launches from the flight deck of HMS Illustrious in 2001

A short take-off and vertical landing aircraft (STOVL aircraft) is a fixed-wing aircraft that is able to take off from a short runway (or take off vertically if it does not have a heavy payload) and land vertically (i.e. with no runway). The formal NATO definition (since 1991) is:

A Short Take-Off and Vertical Landing aircraft is a fixed-wing aircraft capable of clearing a 15 m (50 ft) obstacle within 450 m (1,500 ft) of commencing take-off run, and capable of landing vertically. [1]

On aircraft carriers, non-catapult-assisted fixed-wing short takeoffs are accomplished with the use of thrust vectoring, which may also be used in conjunction with a runway "ski-jump". There are 14 aircraft carriers that operate these STOVL aircraft: United States (9), United Kingdom (2), Italy (2), and Spain (1). Use of STOVL tends to allow aircraft to carry a larger payload compared to vertical take-off and landing (VTOL), while still only requiring a short runway. The most famous examples are the Hawker Siddeley Harrier and the BAe Sea Harrier. Although technically a V/STOL aircraft, they are operationally STOVL aircraft due to the extra weight carried at take-off for fuel and armaments. The same is true of the B variant of the Lockheed Martin F-35 Lightning II, which demonstrated VTOL capability in test flights but is operationally a STOVL.

History

Comparison of lift and thrust for various aircraft LiftThrust1.PNG
Comparison of lift and thrust for various aircraft

In 1951, the Lockheed XFV and the Convair XFY Pogo tailsitters were both designed around the Allison YT40 turboprop engine driving contra-rotating propellers.

The British Hawker P.1127 took off vertically in 1960, and demonstrated conventional take-off in 1961. It was developed into the Hawker Siddeley Harrier which flew in 1967.

In 1962, Lockheed built the XV-4 Hummingbird for the U.S. Army. It sought to "augment" available thrust by injecting the engine exhaust into an ejector pump in the fuselage. First flying vertically in 1963, it suffered a fatal crash in 1964. It was converted into the XV-4B Hummingbird for the U.S. Air Force as a testbed for separate, vertically mounted lift engines, similar to those used in the Yakovlev Yak-38 'Forger'. That plane flew and later crashed in 1969. [2] The Ryan XV-5 Vertifan, which was also built for the U.S. Army at the same time as the Hummingbird, experimented with gas-driven lift fans. That plane used fans in the nose and each wing, covered by doors which resembled half garbage can lids when raised. However, it crashed twice, and proved to generate a disappointing amount of lift, and was difficult to transition to horizontal flight.

Of dozens of VTOL and V/STOL designs tried from the 1950s to 1980s, only the subsonic Hawker Siddeley Harrier and Yak-38 Forger reached operational status, with the Forger being withdrawn after the fall of the Soviet Union.

Rockwell International built, and then abandoned, the Rockwell XFV-12 supersonic fighter which had an unusual wing which opened up like window blinds to create an ejector pump for vertical flight. It never generated enough lift to get off the ground despite developing 20,000 lbf of thrust. The French had a nominally Mach 2 Dassault Mirage IIIV fitted with no less than 8 lift engines that flew (and crashed), but did not have enough space for fuel or payload for combat missions. The German EWR VJ 101 used swiveling engines mounted on the wingtips with fuselage mounted lift engines, and the VJ 101C X1 reached supersonic flight (Mach 1.08) on 29 July 1964. The supersonic Hawker Siddeley P.1154, which competed with the Mirage IIIV for use in NATO, was cancelled even as the aircraft were being built.

In 1983, the Defense Advanced Research Projects Agency (DARPA) initiated the Advanced STOVL (ASTOVL) program to develop a supersonic STOVL fighter (SSF) to replace the Harrier for the U.S. Marine Corps and the U.K. Royal Navy. Several propulsion methods were explored under ASTOVL and assigned to different contractors for research and development. These include the Shaft-Driven Lift Fan (SDLF) by Lockheed which had a forward lift fan powered by a shaft connected to the main engine's low-pressure spool and engaged by a clutch, the Lift-Plus-Lift/Cruise (LPLC) by Northrop (later Northrop Grumman) which had a separate dedicated lift engine alongside the main engine, and the Gas-Driven Lift Fan (GDLF) by McDonnell Douglas that used the main engine bleed air to power a lift fan; all methods had an aft vectoring nozzle for the main engine. [3]

ASTOVL would continue under the Common Affordable Lightweight Fighter (CALF) program, which eventually became part of the Joint Strike Fighter program; the Lockheed Martin X-35B with the SDLF was eventually selected for full-scale development in 2001, with the production aircraft for operational service becoming the F-35B with the F135-PW-600 engine. NASA uses the abbreviation SSTOVL for Supersonic Short Take-Off / Vertical Landing, [4] and as of 2012, the X-35B/F-35B are the only aircraft to conform with this combination within one flight. [5] [6]

The experimental Mach 1.7 Yakovlev Yak-141 did not find an operational customer, but similar rotating rear nozzle technology is used on the F-35B which entered service on 31 July 2015. [7]

Larger STOVL designs were considered, the Armstrong Whitworth AW.681 cargo aircraft was under development when cancelled in 1965. The Dornier Do 31 got as far as three experimental aircraft before cancellation in 1970.

Although mostly a VTOL design, the Bell Boeing V-22 Osprey has increased payload when taking off from a short runway. [8]

Related Research Articles

<span class="mw-page-title-main">VTOL</span> Aircraft takeoff and landing done vertically

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Harrier jump jet</span> Multirole combat aircraft family by Hawker Siddeley, later British Aerospace

The Harrier, informally referred to as the Harrier jump jet, is a family of jet-powered attack aircraft capable of vertical/short takeoff and landing operations (V/STOL). Named after a bird of prey, it was originally developed by British manufacturer Hawker Siddeley in the 1960s. The Harrier emerged as the only truly successful V/STOL design of the many attempted during that era. It was conceived to operate from improvised bases, such as car parks or forest clearings, without requiring large and vulnerable air bases. Later, the design was adapted for use from aircraft carriers.

<span class="mw-page-title-main">V/STOL</span> Aircraft takeoff and landing class

A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.

<span class="mw-page-title-main">Lockheed Martin X-35</span> Concept demonstrator aircraft for Joint Strike Fighter program

The Lockheed Martin X-35 is a concept demonstrator aircraft (CDA) developed by Lockheed Martin for the Joint Strike Fighter program. The X-35 was declared the winner over the competing Boeing X-32 and a developed, armed version went on to enter production in the early 21st century as the F-35 Lightning II.

<span class="mw-page-title-main">Rolls-Royce Pegasus</span> 1950s British turbofan aircraft engine

The Rolls-Royce Pegasus is a British turbofan engine originally designed by Bristol Siddeley. It was manufactured by Rolls-Royce plc. The engine is not only able to power a jet aircraft forward, but also to direct thrust downwards via swivelling nozzles. Lightly loaded aircraft equipped with this engine can manoeuvre like a helicopter. In particular, they can perform vertical takeoffs and landings. In US service, the engine is designated F402.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics

Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">Boeing X-32</span> Multirole combat aircraft prototype by Boeing

The Boeing X-32 is a concept demonstrator aircraft that was designed for the Joint Strike Fighter competition. It lost to the Lockheed Martin X-35 demonstrator, which was further developed into the Lockheed Martin F-35 Lightning II.

<span class="mw-page-title-main">Tail-sitter</span> Type of VTOL aircraft

A tail-sitter, or tailsitter, is a type of VTOL aircraft that takes off and lands on its tail, then tilts horizontally for forward flight.

<span class="mw-page-title-main">Hawker Siddeley P.1127</span> British experimental V/STOL aircraft

The Hawker P.1127 and the Hawker Siddeley Kestrel FGA.1 are the British experimental and development aircraft that led to the Hawker Siddeley Harrier, the first vertical and/or short take-off and landing (V/STOL) jet fighter-bomber.

<span class="mw-page-title-main">Dassault Mirage IIIV</span> French vertical take-off and landing prototype fighter aircraft

The Dassault Mirage IIIV, also spelled Mirage III V, was a French vertical take-off and landing (VTOL) prototype fighter aircraft of the mid-1960s developed and produced by Dassault Aviation.

<span class="mw-page-title-main">Lockheed XV-4 Hummingbird</span> American experimental VTOL aircraft

The Lockheed XV-4 Hummingbird was a U.S. Army project to demonstrate the feasibility of using VTOL for a surveillance aircraft carrying target-acquisition and sensory equipment. It was designed and built by the Lockheed Corporation in the 1960s, one of many attempts to produce a V/STOL vertical take off/landing jet. Both prototype aircraft were destroyed in accidents.

<span class="mw-page-title-main">Rockwell XFV-12</span> American VTOL fighter prototype

The Rockwell XFV-12 was a prototype supersonic United States Navy fighter which was built in 1977. The XFV-12 design attempted to combine the Mach 2 speed and AIM-7 Sparrow armament of the McDonnell Douglas F-4 Phantom II in a VTOL fighter for the small Sea Control Ship which was under study at the time. On paper, it looked superior to the subsonic Hawker Siddeley Harrier attack fighter. However, it was unable to demonstrate an untethered vertical takeoff and its inability to meet performance requirements resulted in the program's termination.

<span class="mw-page-title-main">Powered lift</span> VTOL capable fixed-wing aircraft

A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.

<span class="mw-page-title-main">Rolls-Royce LiftSystem</span> Aircraft propulsion system

The Rolls-Royce LiftSystem, together with the F135 engine, is an aircraft propulsion system designed for use in the STOVL variant of the F-35 Lightning II. The complete system, known as the Integrated Lift Fan Propulsion System (ILFPS), was awarded the Collier Trophy in 2001.

<span class="mw-page-title-main">Tiltjet</span>

A tiltjet is an aircraft propulsion configuration that was historically tested for proposed vertical take-off and landing (VTOL)-capable fighters.

Paul Michael Bevilaqua is an aeronautics engineer at Lockheed Martin in California, United States. In 1990, he invented the lift fan for the Joint Strike Fighter F-35B along with fellow Skunk Works engineer, Paul Shumpert.

Aircraft have different ways to take off and land. Conventional airplanes accelerate along the ground until reaching a speed that is sufficient for the airplane to takeoff and climb at a safe speed. Some airplanes can take off at low speed, this being a short takeoff. Some aircraft such as helicopters and Harrier jump jets can take off and land vertically. Rockets also usually take off vertically, but some designs can land horizontally.

<span class="mw-page-title-main">Shipborne rolling vertical landing</span> Method of aircraft landing

Shipborne rolling vertical landing (SRVL) is a method used to land a V/STOL aircraft that uses both the vertical thrust from the jet engine and lift from the wings.

<span class="mw-page-title-main">British Aerospace P.1216</span> Type of aircraft

The British Aerospace (BAe) P.1216 was a planned Advanced Short Take Off/Vertical Landing (ASTOVL) supersonic aircraft from the 1980s. It was designed by the former Hawker design team at Kingston upon Thames, Surrey, England that created the Harrier family of aircraft.

References

  1. "NATO Glossary of Terms and Definitions" (PDF). Archived from the original (PDF) on 24 June 2003.
  2. Jim Winchester, X-Planes and Prototypes, Barnes and Noble Books
  3. "As McDonnell Douglas revises JAST design". Flight International. 20 February 1996.
  4. Barbara S. Esker (1990). Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft. [Washington, D.C.]: NASA. ISBN   9780760770917. OCLC   24990569. OL   17630526M.
  5. "X-planes". PBS: Nova transcript. Retrieved 9 January 2010.
  6. Cavas, Christopher P. "F-35B STOVL fighter goes supersonic." Archived 14 July 2011 at the Wayback Machine Marine Corps Times , 15 June 2010. Retrieved 15 June 2010.
  7. "U.S. Marine Corps Declares the F-35B Operational - F-35 Lightning II". F-35 Lightning II. Archived from the original on 31 July 2015. Retrieved 11 January 2017.
  8. V-22 Osprey Pocket Guide Archived 29 December 2010 at the Wayback Machine . Bell Boeing, 2007. Retrieved 17 April 2010.