STOVL

Last updated

A Sea Harrier launches from the flight deck of HMS Illustrious in 2001 FA2 Sea Harrier Launches from HMS Illustrious MOD 45139505.jpg
A Sea Harrier launches from the flight deck of HMS Illustrious in 2001

A short take-off and vertical landing aircraft (STOVL aircraft) is a fixed-wing aircraft that is able to take off from a short runway (or take off vertically if it does not have a heavy payload) and land vertically (i.e. with no runway). The formal NATO definition (since 1991) is:

A Short Take-Off and Vertical Landing aircraft is a fixed-wing aircraft capable of clearing a 15 m (50 ft) obstacle within 450 m (1,500 ft) of commencing take-off run, and capable of landing vertically. [1]

On aircraft carriers, non-cata fixed-wing short takeoffs are accomplished with the use of thrust vectoring, which may also be used in conjunction with a runway "ski-jump". There are 14 aircraft carriers that operate these STOVL aircraft: United States (9), United Kingdom (2), Italy (2), and Spain (1). Use of STOVL tends to allow aircraft to carry a larger payload compared to vertical take-off and landing (VTOL), while still only requiring a short runway. The most famous examples are the Hawker Siddeley Harrier and the BAe Sea Harrier. Although technically a V/STOL aircraft, they are operationally STOV aircraft due to the extra weight carried at take-off for fuel and armaments. The same is true of the B variant of the Lockheed Martin F-35 Lightning II, which demonstrated VTOL capability in test flights but is operationally a STOVL.

History

Comparison of lift and thrust for various aircraft LiftThrust1.PNG
Comparison of lift and thrust for various aircraft

In 1951, the Lockheed XFV and the Convair XFY Pogo tailsitters were both designed around the Allison YT40 turboprop engine driving contra-rotating propellers.

The British Hawker P.1127 took off vertically in 1960, and demonstrated conventional take-off in 1961. It was developed into the Hawker Siddeley Harrier which flew in 1967.

In 1962, Lockheed built the XV-4 Hummingbird for the U.S. Army. It sought to "augment" available thrust by injecting the engine exhaust into an ejector pump in the fuselage. First flying vertically in 1963, it suffered a fatal crash in 1964. It was converted into the XV-4B Hummingbird for the U.S. Air Force as a testbed for separate, vertically mounted lift engines, similar to those used in the Yakovlev Yak-38 'Forger'. That plane flew and later crashed in 1969. [2] The Ryan XV-5 Vertifan, which was also built for the U.S. Army at the same time as the Hummingbird, experimented with gas-driven lift fans. That plane used fans in the nose and each wing, covered by doors which resembled half garbage can lids when raised. However, it crashed twice, and proved to generate a disappointing amount of lift, and was difficult to transition to horizontal flight.

Of dozens of VTOL and V/STOL designs tried from the 1950s to 1980s, only the subsonic Hawker Siddeley Harrier and Yak-38 Forger reached operational status, with the Forger being withdrawn after the fall of the Soviet Union.

Rockwell International built, and then abandoned, the Rockwell XFV-12 supersonic fighter which had an unusual wing which opened up like window blinds to create an ejector pump for vertical flight. It never generated enough lift to get off the ground despite developing 20,000 lbf of thrust. The French had a nominally Mach 2 Dassault Mirage IIIV fitted with no less than 8 lift engines that flew (and crashed), but did not have enough space for fuel or payload for combat missions. The German EWR VJ 101 used swiveling engines mounted on the wingtips with fuselage mounted lift engines, and the VJ 101C X1 reached supersonic flight (Mach 1.08) on 29 July 1964. The supersonic Hawker Siddeley P.1154, which competed with the Mirage IIIV for use in NATO, was cancelled even as the aircraft were being built.

NASA uses the abbreviation SSTOVL for Supersonic Short Take-Off / Vertical Landing, [3] and as of 2012, the Lockheed Martin X-35B/F-35B are the only aircraft to conform with this combination within one flight. [4] [5]

The experimental Mach 1.7 Yakovlev Yak-141 did not find an operational customer, but similar rotating rear nozzle technology is used on the F-35B which entered service on 31 July 2015. [6]

Larger STOVL designs were considered, the Armstrong Whitworth AW.681 cargo aircraft was under development when cancelled in 1965. The Dornier Do 31 got as far as three experimental aircraft before cancellation in 1970.

Although mostly a VTOL design, the Bell Boeing V-22 Osprey has increased payload when taking off from a short runway. [7]

Related Research Articles

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Harrier jump jet</span> Multirole combat aircraft family by Hawker Siddeley, later British Aerospace

The Harrier, informally referred to as the Harrier jump jet, is a family of jet-powered attack aircraft capable of vertical/short takeoff and landing operations (V/STOL). Named after a bird of prey, it was originally developed by British manufacturer Hawker Siddeley in the 1960s. The Harrier emerged as the only truly successful V/STOL design of the many attempted during that era. It was conceived to operate from improvised bases, such as car parks or forest clearings, without requiring large and vulnerable air bases. Later, the design was adapted for use from aircraft carriers.

<span class="mw-page-title-main">V/STOL</span> Aircraft takeoff and landing class

A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.

<span class="mw-page-title-main">Lockheed Martin X-35</span> Concept demonstrator aircraft for Joint Strike Fighter program

The Lockheed Martin X-35 is a concept demonstrator aircraft (CDA) developed by Lockheed Martin for the Joint Strike Fighter program. The X-35 was declared the winner over the competing Boeing X-32 and a developed, armed version went on to enter production in the early 21st century as the F-35 Lightning II.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics


Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket, or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">Yakovlev Yak-38</span> VTOL strike fighter aircraft; only operational VTOL strike aircraft of the Soviet Navy

The Yakovlev Yak-38 was Soviet Naval Aviation's only operational VTOL strike fighter aircraft in addition to being its first operational carrier-based fixed-wing aircraft. It was developed specifically for, and served almost exclusively on, the Kiev-class aircraft carriers.

<span class="mw-page-title-main">Tail-sitter</span> Type of VTOL aircraft

A tail-sitter, or tailsitter, is a type of VTOL aircraft that takes off and lands on its tail, then tilts horizontally for forward flight.

<span class="mw-page-title-main">Dassault Mirage IIIV</span> French vertical take-off and landing prototype fighter aircraft

The Dassault Mirage IIIV, also spelled Mirage III V, was a French vertical take-off and landing (VTOL) prototype fighter aircraft of the mid-1960s developed and produced by Dassault Aviation.

The Hawker Siddeley P.1154 was a planned supersonic vertical/short take-off and landing (V/STOL) fighter aircraft designed by Hawker Siddeley Aviation (HSA).

<span class="mw-page-title-main">Lockheed XV-4 Hummingbird</span> American experimental VTOL aircraft

The Lockheed XV-4 Hummingbird was a U.S. Army project to demonstrate the feasibility of using VTOL for a surveillance aircraft carrying target-acquisition and sensory equipment. It was designed and built by the Lockheed Corporation in the 1960s, one of many attempts to produce a V/STOL vertical take off/landing jet. Both prototype aircraft were destroyed in accidents.

<span class="mw-page-title-main">Rockwell XFV-12</span> American VTOL fighter prototype

The Rockwell XFV-12 was a prototype supersonic United States Navy fighter which was built in 1977. The XFV-12 design attempted to combine the Mach 2 speed and AIM-7 Sparrow armament of the McDonnell Douglas F-4 Phantom II in a VTOL fighter for the small Sea Control Ship which was under study at the time. On paper, it looked superior to the subsonic Hawker Siddeley Harrier attack fighter. However it was unable to demonstrate an untethered vertical takeoff and its inability to meet performance requirements terminated the program.

<span class="mw-page-title-main">Rolls-Royce LiftSystem</span> Aircraft propulsion system

The Rolls-Royce LiftSystem, together with the F135 engine, is an aircraft propulsion system designed for use in the STOVL variant of the F-35 Lightning II. The complete system, known as the Integrated Lift Fan Propulsion System (ILFPS), was awarded the Collier Trophy in 2001.

<span class="mw-page-title-main">Tiltjet</span>

A tiltjet is an aircraft propulsion configuration that was historically tested for proposed vertical take-off and landing (VTOL)-capable fighters.

Paul Michael Bevilaqua is an aeronautics engineer at Lockheed Martin in California. In 1990, he invented the lift fan for the Joint Strike Fighter F-35B along with fellow Skunk Works engineer, Paul Shumpert.

Aircraft can have different ways to take off and land. Conventional airplanes accelerate along the ground until sufficient lift is generated for takeoff, and reverse the process to land. Some airplanes can take off at low speed, this being a short takeoff. Some aircraft such as helicopters and Harrier jump jets can take off and land vertically. Rockets also usually take off vertically, but some designs can land horizontally.

<span class="mw-page-title-main">Shipborne rolling vertical landing</span>

Shipborne rolling vertical landing (SRVL) is a method used to land a V/STOL aircraft that uses both the vertical thrust from the jet engine and lift from the wings.

<span class="mw-page-title-main">British Aerospace P.1216</span> Type of aircraft

The British Aerospace (BAe) P.1216 was a planned Advanced Short Take Off/Vertical Landing (ASTOVL) supersonic aircraft from the 1980s. It was designed by the former Hawker design team at Kingston upon Thames, Surrey, England that created the Harrier family of aircraft.

The period between 1945 and 1979 is sometimes called the post-war era or the period of the post-war political consensus. During this period, aviation was dominated by the arrival of the Jet Age. In civil aviation the jet engine allowed a huge expansion of commercial air travel, while in military aviation it led to the widespread introduction of supersonic aircraft.

<span class="mw-page-title-main">Tethered flight test</span>

A tethered flight test is a type of flight testing where a machine is connected by a tether to the ground. Tethered testing may be used when motion through the atmosphere is not required to sustain flight, such as for airship; vertical take-off and landing (VTOL), rotary wing or tiltwing aircraft ; or for tests of certain rockets, such as vertical takeoff, vertical landing (VTVL). Fixed wing scale models can be tested on a tether in a wind tunnel, simulating motion through the atmosphere.

References

  1. "NATO Glossary of Terms and Definitions" (PDF). Archived from the original (PDF) on 24 June 2003.
  2. Jim Winchester, X-Planes and Prototypes, Barnes and Noble Books
  3. Barbara S. Esker (1990). Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft. [Washington, D.C.]: NASA. ISBN   9780760770917. OCLC   24990569. OL   17630526M.
  4. "X-planes". PBS: Nova transcript. Retrieved 9 January 2010.
  5. Cavas, Christopher P. "F-35B STOVL fighter goes supersonic." Archived 14 July 2011 at the Wayback Machine Marine Corps Times , 15 June 2010. Retrieved 15 June 2010.
  6. "U.S. Marine Corps Declares the F-35B Operational - F-35 Lightning II". F-35 Lightning II.
  7. V-22 Osprey Pocket Guide Archived 29 December 2010 at the Wayback Machine . Bell Boeing, 2007. Retrieved 17 April 2010.