Dassault Mirage IIIV

Last updated
Mirage IIIV
Mirage IIIV, Musee de l'Air et de l'Espace, Le Bourget, Paris. (8256549535).jpg
Mirage IIIV at the Musée de l'Air et de l'Espace, Le Bourget, France
General information
Type VTOL fighter aircraft
Manufacturer Dassault Aviation
Primary user French Air Force
Number built2
History
Manufactured1965-1966
First flight12 February 1965
Developed from Dassault Balzac V

The Dassault Mirage IIIV, also spelled Mirage III V, was a French vertical take-off and landing (VTOL) prototype fighter aircraft of the mid-1960s developed and produced by Dassault Aviation.

Contents

The Mirage IIIV was a VTOL derivative of an existing conventional fighter, the Dassault Mirage III; the principal difference between the two types was the addition of eight small vertical lift jets which straddled the main engine. These lift jets would have been used during vertical takeoffs and landings, but would have been inactive during horizontal flight. The Mirage IIIV had come about as a response to the issuing of a NATO specification, NATO Basic Military Requirement 3 (NBMR-3), which sought a supersonic-capable VTOL strike fighter.

The Mirage IIIV was a competitor with Hawker Siddeley's P.1154 VTOL fighter, a cousin of the Hawker Siddeley Harrier. Both aircraft competed to be selected to meet the NBMR-3 requirement. While the Mirage IIIV is commonly viewed as being more politically palatable due to an emphasis having been placed upon multinational development and manufacturing plans, the design of P.1154 (which only used a single engine) was seen as more straightforward and practical. Ultimately the P.1154 was selected to meet the NBMR-3 requirement to the detriment of the Mirage IIIV. One of the two prototypes constructed was destroyed in an accident; shortly following its loss, the whole project was abandoned; the surviving aircraft has since been placed on public display.

Design and development

Background

In August 1961, NATO released an updated revision of its VTOL strike fighter requirement, NATO Basic Military Requirement 3 (NBMR-3). [1] Specifications called for a supersonic V/STOL strike fighter with a combat radius of 460 kilometres (250 nmi). Cruise speed was to be Mach 0.92, with a dash speed of Mach 1.5. [2] The aircraft, with a 910-kilogram (2,000 lb) payload, had to be able to clear a 15-metre (50 ft) obstacle following a 150-metre (500 ft) takeoff roll. [3] [4] Victory in this competition was viewed being of a high importance at the time as it was seem as being potentially "the first real NATO combat aircraft". [2]

During the 1950s and 1960, both French aircraft manufacturer Dassault Aviation and British aerospace company Hawker Siddeley Aviation (HSA) were deeply interested in vertical takeoff/landing (VTOL)-capable combat aircraft. HSA had already been keen to develop a new generation of combat aircraft that would be capable of supersonic speeds. [5] HSA's chief aircraft designer Sir Sydney Camm decided that the company should investigate the prospects of developing and manufacturing a viable combat-capable vertical take-off and landing (VTOL) fighter aircraft. [6] Along with the subsonic Hawker P.1127 fighter (which would become the Hawker Siddeley Harrier later on, a supersonic design, designated as the P.1150 was produced; however, the release of NBMR-3, and subsequent revisions to it, led to the P.1150 proposal being considered to be undersized and thus unsatisfactory, which led to a desire for a redesign. [2] [N 1] The new, larger aircraft design soon emerged, which was initially designated as P.1150/3 prior to being redesignated as the P.1154. [4]

In January 1962, HSA submitted the proposed design of the P.1154 to NATO via the Ministry of Aviation. [2] NBMR.3 attracted a total of eleven contenders, including Dassault's Mirage IIIV proposal, which would become viewed as the principal competitor to the P.1154. Substantial support for the Mirage IIIV came from Britain, work on the programme having involved the British Aircraft Corporation (BAC), while the Dassault-led design also held the favour of several members of the British Air Staff. [7] [2] While the P.1154 was judged to be technically superior, the Mirage IIIV had acquired a greater level of political palatability due to the co-operative development and production aspects proposed for the programme, under which work was to be distributed across a number of member nations. [8]

In May 1962, the proposed P.1154 emerged as the winner of the NBMR.3 competition . [7] According to aviation author Jeffort, the Mirage IIIV was rejected mainly because of its excessive complexity: using nine engines, compared to the P.1154's single-engine approach. [9] However, the success of the P.1154 design did not lead to orders being placed for it. [8] NATO lacked any central budget, instead relying on individual member nations to actually procure military equipment, contributing to the NBMR.3 selection going unheeded by all of the NATO member nations. Thus, in 1965, the NMBR.3 project was unceremoniously terminated. [8]

While the French government formally withdrew its participation in NMBR.3, after the Mirage IIIV had been rejected, [7] [10] Dassault continued work towards the building of Mirage IIIV prototypes.

Dassault Balzac V

Since the Rolls-Royce RB162 lift engines which had been specified for the Mirage IIIV were not expected to be available before 1963, Dassault decided to modify the first Mirage III prototype into an interim VTOL testbed; in this configuration, it became the Balzac V. This was fitted with eight Rolls-Royce RB.108 lift engines along with a single unreheated Bristol Orpheus BOr 3 as the main engine. [11] According to aerospace publication Flight International, a key goal for the Balzac prototype was to prove the autopilot system, which was identical to the unit which was proposed use with the Mirage IIIV, as well as the lift and transition system. [12] The Balzac began tethered hovering on 12 October 1962 and achieved the first free hover only six days later. The first accelerating transition from vertical take-off to horizontal flight took place on its 17th sortie on 18 March 1963. The aircraft had two fatal accidents, one in January 1964 and one in September 1965. After the last accident the aircraft was not repaired. [13]

Mirage IIIV prototypes

Dassault Mirage IIIV Dassault Mirage IIIV.jpg
Dassault Mirage IIIV

Work on the Balzac assisted with the construction of the first prototype of the Mirage IIIV. This was roughly twice the size of the earlier aircraft. A pair of Mirage IIIV prototypes were constructed, the first of which conducted its first hovering trial on 12 February 1965. [14] [15] It was powered by a single Pratt & Whitney JTF10 turbofan engine, designated as the TF104. The TF104 engine was originally evaluated on a specially-constructed aerial testbed aircraft, the Mirage IIIT, which shared many similarities to basic design of the Mirage IIIC design, with the exception of modifications in order to accommodate the selected engine. [16] The TF104 engine was quickly replaced by an upgraded TF106 engine, with thrust of 74.5 kN (16,750 lbf), before the first prototype made its initial transition to forward flight in March 1966. [17] The prototype subsequently attained Mach 1.32 during test flights.

In June 1966, the second prototype, which featured a TF306 turbofan engine for forward thrust of 82.4 kN (18,500 lbf), conducted its first flight. During September of that year, it attained Mach 2.04 in level flight, but was lost in an accident on 28 November 1966. [14] The Mirage IIIV was never able to take off vertically and successfully attain supersonic flight during the same flight.

The loss of the second prototype had effectively killed the program, and in fact killed any prospect of an operational Mach 2 vertical take-off fighter for decades. The competing Hawker P.1154 had been cancelled in 1965 by the government just as the prototypes were under construction; however, its subsonic cousin, the Hawker-Siddeley Kestrel VTOL attack aircraft was flying in tri-partite trials with the UK, US and West Germany. The French preferred the Mirage IIIV, and the international cooperation that would have been necessary to move the P.1154 into reality would never materialise.

Some of the P.1154 work contributed to the final operational vertical take-off fighter based on the Kestrel, the highly successful Harrier. The Mirage IIIV was never a realistic combat aircraft; the eight lift engines would likely have been a maintenance nightmare, and certainly their weight imposed a severe range and payload penalty on the aircraft.

Design

The Dassault Mirage IIIV was a supersonic-capable vertical takeoff/landing (VTOL) fighter aircraft. It shared the general layout of earlier Mirage fighters, but featured a long and relative broad fuselage along with a bigger wing; the Mirage IIIV was considerably larger than contemporary fighter aircraft of its era. [18] Akin to the earlier Balzac V testbed, the Mirage IIIV was outfitted with a total of nine engines: a single SNECMA-modified Pratt & Whitney JTF10 turbofan, designated TF104, capable of producing up to 61.8 kN (13,900 lbf) of thrust, and eight Rolls-Royce RB162-1 engines, each being capable of generating a maximum of 15.7 kN (3,525 lbf) thrust, which were mounted vertically in pairs around the centreline. [18]

Dassault Mirage IIIV at Musee de l'Air et de l'Espace Dassault Mirage IIIV (MAE).JPG
Dassault Mirage IIIV at Musée de l'Air et de l'Espace

A key design feature of the Mirage IIIV to improve vertical flight performance was the installation of movable thrust deflector doors ahead of the nozzles set in the aircraft's underside. [19] These would be inclined 45° rearwards while on the ground, dispersing both debris and hot gasses away from the aircraft. As the engines accelerated to full power, these doors would automatically drop to a 90° position in order to obtain maximum lift thrust. According to Flight International, the Mirage IIIV had an advertised performance envelope in the vicinity of Mach 1.15 when flown at low altitude and Mach 2.3 when flown at height. [20]

Throughout development, the electronics were given substantial attention; it was this element of the design that has been attributed as being a major contributing factor to the cost overruns which impacted the programme. [20] Many elements of the cockpit and ancillary electronics of the Mirage IIIV were later reused on the conventional Mirage IIIF, which later re-designated as the Mirage F1.

Specifications (Mirage IIIV-01)

Data fromModern Combat Aircraft 23 - Mirage [14]

General characteristics

Performance

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

<span class="mw-page-title-main">Hawker Siddeley Harrier</span> British ground attack aircraft

The Hawker Siddeley Harrier is a British jet-powered attack aircraft designed and produced by the British aerospace company Hawker Siddeley. It was the first operational ground attack and reconnaissance aircraft with vertical/short takeoff and landing (V/STOL) capabilities and the only truly successful V/STOL design of its era.

<span class="mw-page-title-main">STOVL</span> Short takeoff and landing aircraft

A short take-off and vertical landing aircraft is a fixed-wing aircraft that is able to take off from a short runway and land vertically. The formal NATO definition is:

A Short Take-Off and Vertical Landing aircraft is a fixed-wing aircraft capable of clearing a 15 m obstacle within 450 m of commencing take-off run, and capable of landing vertically.

<span class="mw-page-title-main">VTOL</span> Aircraft takeoff and landing done vertically

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Harrier jump jet</span> Multirole combat aircraft family by Hawker Siddeley, later British Aerospace

The Harrier, informally referred to as the Harrier jump jet, is a family of jet-powered attack aircraft capable of vertical/short takeoff and landing operations (V/STOL). Named after a bird of prey, it was originally developed by British manufacturer Hawker Siddeley in the 1960s. The Harrier emerged as the only truly successful V/STOL design of the many attempted during that era. It was conceived to operate from improvised bases, such as car parks or forest clearings, without requiring large and vulnerable air bases. Later, the design was adapted for use from aircraft carriers.

<span class="mw-page-title-main">V/STOL</span> Aircraft takeoff and landing class

A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.

<span class="mw-page-title-main">Rolls-Royce Pegasus</span> 1950s British turbofan aircraft engine

The Rolls-Royce Pegasus is a British turbofan engine originally designed by Bristol Siddeley. It was manufactured by Rolls-Royce plc. The engine is not only able to power a jet aircraft forward, but also to direct thrust downwards via swivelling nozzles. Lightly loaded aircraft equipped with this engine can manoeuvre like a helicopter. In particular, they can perform vertical takeoffs and landings. In US service, the engine is designated F402.

<span class="mw-page-title-main">Yakovlev Yak-38</span> VTOL strike fighter aircraft; only operational VTOL strike aircraft of the Soviet Navy

The Yakovlev Yak-38 was Soviet Naval Aviation's only operational VTOL strike fighter aircraft in addition to being its first operational carrier-based fixed-wing aircraft. It was developed specifically for, and served almost exclusively on, the Kiev-class aircraft carriers.

Mirage is a name given to several types of jet aircraft designed by the French company Dassault Aviation, some of which were produced in different variants. Most were supersonic fighters with delta wings. The most successful was the Mirage III in its many variants and derivatives, which were widely produced and modified both by Dassault and by other companies. Some variants were given other names, while some otherwise unrelated types were given the Mirage name.

<span class="mw-page-title-main">Hawker Siddeley P.1127</span> British experimental V/STOL aircraft

The Hawker P.1127 and the Hawker Siddeley Kestrel FGA.1 are the British experimental and development aircraft that led to the Hawker Siddeley Harrier, the first vertical and/or short take-off and landing (V/STOL) jet fighter-bomber.

The Hawker Siddeley P.1154 was a planned supersonic vertical/short take-off and landing (V/STOL) fighter aircraft designed by Hawker Siddeley Aviation (HSA).

<span class="mw-page-title-main">EWR VJ 101</span> Experimental aircraft by Entwicklungsring Süd

The EWR VJ 101 was an experimental West German jet fighter vertical takeoff/landing (VTOL) tiltjet aircraft. VJ stood for Versuchsjäger,. The 101 was one of the first V/STOL designs to have the potential for eventual Mach 2 flight.

<span class="mw-page-title-main">VFW VAK 191B</span> Experimental strike fighter aircraft by VFW

The VFW VAK 191B was an experimental German vertical take-off and landing (VTOL) strike fighter of the early 1970s. VAK was the abbreviation for Vertikalstartendes Aufklärungs- und Kampfflugzeug. Designed and built by the Vereinigte Flugtechnische Werke (VFW), it was developed with the purpose of eventually serving as a replacement for the Italian Fiat G.91 then in service with the German Air Force. Operationally, it was intended to have been armed with nuclear weapons as a deterrent against aggression from the Soviet Union and, in the event of a major war breaking out, to survive the first wave of attacks by deploying to dispersed locations, rather than conventional airfields, and to retaliate against targets behind enemy lines.

<span class="mw-page-title-main">Rockwell XFV-12</span> American VTOL fighter prototype

The Rockwell XFV-12 was a prototype supersonic United States Navy fighter which was built in 1977. The XFV-12 design attempted to combine the Mach 2 speed and AIM-7 Sparrow armament of the McDonnell Douglas F-4 Phantom II in a VTOL fighter for the small Sea Control Ship which was under study at the time. On paper, it looked superior to the subsonic Hawker Siddeley Harrier attack fighter. However, it was unable to demonstrate an untethered vertical takeoff and its inability to meet performance requirements resulted in the program's termination.

<span class="mw-page-title-main">Dassault Balzac V</span> Type of aircraft

The Dassault Balzac V was a French vertical takeoff and landing (VTOL) testbed of the early 1960s. It was built by Dassault Aviation from a prototype Mirage III aircraft to test the configuration for the Mirage IIIV. The sole example was involved in two major accidents that killed the aircraft's pilot, and was not repaired after the second crash.

<span class="mw-page-title-main">Tiltjet</span>

A tiltjet is an aircraft propulsion configuration that was historically tested for proposed vertical take-off and landing (VTOL)-capable fighters.

Ralph Spenser Hooper, OBE, FREng, FRAeS was an English aeronautical engineer, recognised mostly for his work on the Hawker Siddeley Harrier, specifically in relation to the marriage between the Pegasus engine and the layout of the aircraft, allowing it to safely hover with margins of stability.

<span class="mw-page-title-main">British Aerospace P.1216</span> Type of aircraft

The British Aerospace (BAe) P.1216 was a planned Advanced Short Take Off/Vertical Landing (ASTOVL) supersonic aircraft from the 1980s. It was designed by the former Hawker design team at Kingston upon Thames, Surrey, England that created the Harrier family of aircraft.

<span class="mw-page-title-main">NBMR-3</span>

NBMR-3 or NATO Basic Military Requirement 3 was a document produced by a North Atlantic Treaty Organisation (NATO) committee in the early 1960s detailing the specification of future combat aircraft designs. The requirement was for aircraft in two performance groups, supersonic fighter aircraft (NBMR-3a) and subsonic fighter-bomber aircraft (NBMR-3b). Both requirements specifically stated the need for V/STOL performance as the contemporary fear was that airfields could be overrun or disabled through Eastern Bloc hostile actions and that dispersed operating bases would be needed. Germany was planning replacements for the Fiat G.91 and Lockheed F-104G Starfighter using the new aircraft types.

<span class="mw-page-title-main">Tethered flight test</span>

A tethered flight test is a type of flight testing where a machine is connected by a tether to the ground. Tethered testing may be used when motion through the atmosphere is not required to sustain flight, such as for airship; vertical take-off and landing (VTOL), rotary wing or tiltwing aircraft ; or for tests of certain rockets, such as vertical takeoff, vertical landing (VTVL). Fixed wing scale models can be tested on a tether in a wind tunnel, simulating motion through the atmosphere.

References

Notes

  1. According to aviation author Derek Wood, the decision not to persist with the original P.1150 design was a "serious setback...it would have provided a first class basic type". [2]

Citations

  1. Jefford 2006 et al., p. 12.
  2. 1 2 3 4 5 6 Wood 1975, p. 215.
  3. Jenkins 1998, p. 19.
  4. 1 2 Buttler 2000, p. 118.
  5. Wood 1975, pp. 211-213.
  6. Wood 1975, p. 213.
  7. 1 2 3 Buttler 2000, p. 119.
  8. 1 2 3 Wood 1975, p. 216.
  9. Jefford 2006 et al., p. 19.
  10. Jefford 2006 et al., pp. 12–13.
  11. "R-R for Dassault." Flight International, 17 May 1962. p. 764.
  12. "Balzac VTOL Forerunner of the Mirage IIIV." Flight International, 2 August 1962. pp. 174-175.
  13. Jackson 1985, p. 62.
  14. 1 2 3 Jackson 1985, p. 66.
  15. "IIIV in the Z Axis." Flight International, 25 February 1965. p. 276.
  16. "Mirage III T." Dassault Aviation, Retrieved 18 June 2017.
  17. "Snecma TF-106." Flight International, 6 May 1965. p. 687.
  18. 1 2 Flight International 20 May 1965, pp. 774-775.
  19. Flight International 20 May 1965, p. 774.
  20. 1 2 Flight International 20 May 1965, p. 775.

Bibliography