List of VTOL aircraft

Last updated

This is a list of fixed-wing aircraft capable of vertical take-off and landing arranged under manufacturer. The list excludes helicopters, including compound helicopters and gyrocopters, because they are assumed to have this capability.

Contents

For more detail on subtypes of VTOL, see List of tiltrotor aircraft.

A

B

C

D

U.S. Army Doak 16/VZ-4DA Doak VZ-4 in level flight.jpg
U.S. Army Doak 16/VZ-4DA

E

F

G

H

L

M

N

O

P

R

S

T

V

W

Y

Z

See also

Related Research Articles

<span class="mw-page-title-main">STOVL</span> Short takeoff and landing aircraft

A short take-off and vertical landing aircraft is a fixed-wing aircraft that is able to take off from a short runway and land vertically. The formal NATO definition is:

A Short Take-Off and Vertical Landing aircraft is a fixed-wing aircraft capable of clearing a 15 m obstacle within 450 m of commencing take-off run, and capable of landing vertically.

<span class="mw-page-title-main">VTOL</span> Aircraft takeoff and landing done vertically

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Tiltrotor</span> Aircraft type

A tiltrotor is an aircraft that generates lift and propulsion by way of one or more powered rotors mounted on rotating shafts or nacelles usually at the ends of a fixed wing. Almost all tiltrotors use a transverse rotor design, with a few exceptions that use other multirotor layouts.

<span class="mw-page-title-main">V/STOL</span> Aircraft takeoff and landing class

A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.

<span class="mw-page-title-main">Rolls-Royce Pegasus</span> 1950s British turbofan aircraft engine

The Rolls-Royce Pegasus is a British turbofan engine originally designed by Bristol Siddeley. It was manufactured by Rolls-Royce plc. The engine is not only able to power a jet aircraft forward, but also to direct thrust downwards via swivelling nozzles. Lightly loaded aircraft equipped with this engine can manoeuvre like a helicopter. In particular, they can perform vertical takeoffs and landings. In US service, the engine is designated F402.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics

Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">Tiltwing</span>

A tiltwing aircraft features a wing that is horizontal for conventional forward flight and rotates up for vertical takeoff and landing. It is similar to the tiltrotor design where only the propeller and engine rotate. Tiltwing aircraft are typically fully capable of VTOL operations.

<span class="mw-page-title-main">Tail-sitter</span> Type of VTOL aircraft

A tail-sitter, or tailsitter, is a type of VTOL aircraft that takes off and lands on its tail, then tilts horizontally for forward flight.

<span class="mw-page-title-main">Dassault Mirage IIIV</span> French vertical take-off and landing prototype fighter aircraft

The Dassault Mirage IIIV, also spelled Mirage III V, was a French vertical take-off and landing (VTOL) prototype fighter aircraft of the mid-1960s developed and produced by Dassault Aviation.

<span class="mw-page-title-main">Lockheed XV-4 Hummingbird</span> American experimental VTOL aircraft

The Lockheed XV-4 Hummingbird was a U.S. Army project to demonstrate the feasibility of using VTOL for a surveillance aircraft carrying target-acquisition and sensory equipment. It was designed and built by the Lockheed Corporation in the 1960s, one of many attempts to produce a V/STOL vertical take off/landing jet. Both prototype aircraft were destroyed in accidents.

<span class="mw-page-title-main">Gyrodyne</span> Type of VTOL aircraft

A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.

A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.

<span class="mw-page-title-main">Rockwell XFV-12</span> American VTOL fighter prototype

The Rockwell XFV-12 was a prototype supersonic United States Navy fighter which was built in 1977. The XFV-12 design attempted to combine the Mach 2 speed and AIM-7 Sparrow armament of the McDonnell Douglas F-4 Phantom II in a VTOL fighter for the small Sea Control Ship which was under study at the time. On paper, it looked superior to the subsonic Hawker Siddeley Harrier attack fighter. However, it was unable to demonstrate an untethered vertical takeoff and its inability to meet performance requirements resulted in the program's termination.

<span class="mw-page-title-main">Bell Boeing Quad TiltRotor</span> Proposed four-rotor derivative of the V-22 Osprey

The Bell Boeing Quad TiltRotor (QTR) is a proposed four-rotor derivative of the Bell Boeing V-22 Osprey developed jointly by Bell Helicopter and Boeing. The concept is a contender in the U.S. Army's Joint Heavy Lift program. It would have a cargo capacity roughly equivalent to the C-130 Hercules, cruise at 250 knots, and land at unimproved sites vertically like a helicopter.

<span class="mw-page-title-main">Powered lift</span> VTOL capable fixed-wing aircraft

A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.

<span class="mw-page-title-main">Tiltjet</span>

A tiltjet is an aircraft propulsion configuration that was historically tested for proposed vertical take-off and landing (VTOL)-capable fighters.

<span class="mw-page-title-main">VTOL X-Plane</span> American experimental aircraft

The Vertical Take-Off and Landing Experimental Aircraft program was an American research project sponsored by the Defense Advanced Research Projects Agency (DARPA). The goal of the program was to demonstrate a VTOL aircraft design that can take off vertically and efficiently hover, while flying faster than conventional rotorcraft. There have been many previous attempts, most of them unsuccessful as of 2015.

The period between 1945 and 1979 is sometimes called the post-war era or the period of the post-war political consensus. During this period, aviation was dominated by the arrival of the Jet Age. In civil aviation the jet engine allowed a huge expansion of commercial air travel, while in military aviation it led to the widespread introduction of supersonic aircraft.

<span class="mw-page-title-main">Annular lift fan aircraft</span>

An annular lift fan aircraft is a conceptual vertical takeoff and landing (VTOL) aircraft that was first systematically and numerically investigated in 2015. This concept was proposed to offer a VTOL solution for both high hovering efficiency and high cruise speed, using a large annular lift fan instead of the relatively small conventional circular lift fans used in the Ryan XV-5 Vertifan and the F-35B Lightning II (JSF).

References

  1. "Popular Science" . Retrieved 2013-09-25.
  2. Hatfield Future Projects Newsletters No.24, April 1988
  3. http://www.robertcmason.com/textdocs/GermanVSTOLFighters.pdf [ bare URL PDF ]
  4. Choi, Charles Q. (2010-01-19). "Electric Icarus: NASA Designs a One-Man Stealth Plane". Scientific American. Retrieved 2009-01-22.
  5. Rolls Royce Leader of the Skies by Michael Donne, p.152
  6. AVIATION WEEK, August 26 1957, p.43
  7. Flight 1960
  8. Flugwelt 1961
  9. 50 Years with Rolls-Royce: My Reminiscences published by the RRHT
  10. RAE. conceptual low altitude tactical bomber, 1954
  11. Flight 21 Feb 1974, p. 251