Balanced field takeoff

Last updated

In aviation, a balanced field takeoff is a condition where the takeoff distance required (TODR) with one engine inoperative and the accelerate-stop distance are equal for the aircraft weight, engine thrust, aircraft configuration and runway condition. [1] For a given aircraft weight, engine thrust, aircraft configuration, and runway condition, the shortest runway length that complies with safety regulations is the balanced field length. [2] [3] [4]

Contents

The takeoff decision speed V1 is the fastest speed at which the pilot must take the first actions to reject the takeoff (e.g. reduce thrust, apply brakes, deploy speed brakes). At speeds below V1 the aircraft can be brought to a halt before the end of the runway. At V1 and above, the pilot should continue the takeoff even if an emergency is recognized. The speed will ensure the aircraft achieves the required height above the takeoff surface within the takeoff distance.[ citation needed ]

To achieve a balanced field takeoff, V1 is selected so the take-off distance with one engine inoperative, and the accelerate-stop distance, are equal. [1] When the runway length is equal to the balanced field length only one value for V1 will exist. Aviation regulations (for transport category aircraft) require the takeoff distance with one engine inoperative to be no greater than the take-off distance available (TODA); and the accelerate-stop distance to be no greater than the accelerate-stop distance available (ASDA). [5] [6]

On runways longer than the balanced field length for the aircraft weight the operator may be able to choose V1 from a range of speeds if adequate information is supplied by the aircraft manufacturer. The slowest speed in this range will be determined by the Take Off Distance Available (TODA). [7] For a low V1, if an engine fails just above V1, the acceleration to VR on one engine will take more distance. Whereas, if an engine fails before a low V1, it will take less distance to stop, so the Accelerate Stop Distance Required (ASDR) is lower. By contrast, the fastest speed in this range will be determined by the Accelerate Stop Distance Available (ASDA). [7] If an engine fails above a high V1, it will take less distance to reach VR, so Take Off Distance Required (TODR) is lower. Whereas, if an engine fails just below a high V1, it will take more distance to stop, so the Accelerate Stop Distance Required is greater. [8]

Alternatively, on runways longer than the balanced field length the pilot can use reduced thrust, resulting in the balanced field length again being equal to the runway length available.[ citation needed ]

Factors affecting the balanced field length include:

Technology

Calculation of the balanced field length traditionally involves relying on an expansion program model, where the various forces are evaluated as a function of speed, and step-wise integrated, using an estimate for V1. The process is iterated with different values for the engine failure speed until the accelerate-stop and accelerate-go distances are equal. This process suffers from the inherently slow and repetitive approach, which is also subject to round-off errors if the speed increment between the steps is not carefully selected, which could cause some issues in first principle aircraft performance models provided to airlines for day-to-day operations. Alternate approaches using a more mathematically complex but inherently more accurate and faster algebraic integration method have however been developed. [9]

Landing and Takeoff Performance Monitoring Systems [10] [11] [12] [13] are devices aimed at providing the pilot with information on the validity of the performance computation, and averting runway overruns that occur in situations not adequately addressed by the takeoff V-speeds concept.[ clarification needed ]

See also

Related Research Articles

<span class="mw-page-title-main">JATO</span> Type of aircraft assisted take-off

JATO is a type of assisted take-off for helping overloaded aircraft into the air by providing additional thrust in the form of small rockets. The term JATO is used interchangeably with the term RATO, for rocket-assisted take-off.

<span class="mw-page-title-main">Takeoff</span> Phase of flight in which a vehicle leaves the land or water surface

Takeoff is the phase of flight in which an aerospace vehicle leaves the ground and becomes airborne. For aircraft traveling vertically, this is known as liftoff.

<span class="mw-page-title-main">STOL</span> Class of airplanes that are designed to takeoff and land in a short distance

A short takeoff and landing (STOL) aircraft is a conventional fixed-wing aircraft that has short runway requirements for takeoff and landing. Many STOL-designed aircraft also feature various arrangements for use on airstrips with harsh conditions. STOL aircraft, including those used in scheduled passenger airline operations, have also been operated from STOLport airfields which feature short runways.

<span class="mw-page-title-main">Landing</span> Transition from being in flight to being on a surface

Landing is the last part of a flight, where a flying animal, aircraft, or spacecraft returns to the ground. When the flying object returns to water, the process is called alighting, although it is commonly called "landing", "touchdown" or "splashdown" as well. A normal aircraft flight would include several parts of flight including taxi, takeoff, climb, cruise, descent and landing.

<span class="mw-page-title-main">Thrust reversal</span> Temporary diversion of an aircraft engines thrust

Thrust reversal, also called reverse thrust, is the temporary diversion of an aircraft engine's thrust for it to act against the forward travel of the aircraft, providing deceleration. Thrust reverser systems are featured on many jet aircraft to help slow down just after touch-down, reducing wear on the brakes and enabling shorter landing distances. Such devices affect the aircraft significantly and are considered important for safe operations by airlines. There have been accidents involving thrust reversal systems, including fatal ones.

<span class="mw-page-title-main">Maximum takeoff weight</span> Maximum weight of a craft at which takeoff is permitted

The maximum takeoff weight (MTOW) or maximum gross takeoff weight (MGTOW) or maximum takeoff mass (MTOM) of an aircraft is the maximum weight at which the pilot is allowed to attempt to take off, due to structural or other limits. The analogous term for rockets is gross lift-off mass, or GLOW. MTOW is usually specified in units of kilograms or pounds.

<span class="mw-page-title-main">Learjet 25</span> Type of aircraft

The Learjet 25 is an American ten-seat, twin-engine, high-speed business jet aircraft manufactured by Learjet. It is a stretched version of the Learjet 24.

A takeoff/go-around switch is a switch on the autothrottle of modern large aircraft, with two modes: takeoff (TO) and go-around (GA). The mode is dependent on the phase of flight; usually, on approach to land, the autopilot will be set to approach mode, therefore if the TO/GA switch is pressed it will activate the go-around mode of the autothrottle (about 90–92% N1, if pressed again, go around thrust will increase to full ; conversely, when takeoff is set on the autopilot, the switch activates takeoff mode of the autothrottle. On Boeing aircraft TO/GA modes are selected by a separate button near the throttle levers, but on Airbus aircraft it is activated by advancing the thrust levers forward to the TO/GA detent.

In aviation terminology, a rejected takeoff (RTO) or aborted takeoff is the situation in which the pilot decides to abort the takeoff of an airplane after initiating the takeoff roll but before the airplane leaves the ground.

<span class="mw-page-title-main">TWA Flight 159</span> 1967 aviation accident

Trans World Airlines (TWA) Flight 159 was a regularly scheduled passenger flight from New York City to Los Angeles, California, with a stopover in Cincinnati/Northern Kentucky International Airport, Kentucky, that crashed after an aborted takeoff from Cincinnati on November 6, 1967. The Boeing 707 attempted to abort takeoff when the copilot became concerned that the aircraft had collided with a disabled DC-9 on the runway. The aircraft overran the runway, struck an embankment and caught fire. One passenger died as a result of the accident.

<span class="mw-page-title-main">TWA Flight 843</span> 1992 American air accident

TWA Flight 843 was a scheduled Trans World Airlines passenger flight that crashed after an aborted takeoff from John F. Kennedy International Airport to San Francisco International Airport (California) in July 1992. Despite an intense fire after the crash, the crew was able to evacuate all 280 passengers from the aircraft. There was no loss of life, although the aircraft was destroyed by the fire.

<span class="mw-page-title-main">V speeds</span> Standard terms to define airspeeds

In aviation, V-speeds are standard terms used to define airspeeds important or useful to the operation of all aircraft. These speeds are derived from data obtained by aircraft designers and manufacturers during flight testing for aircraft type-certification. Using them is considered a best practice to maximize aviation safety, aircraft performance, or both.

<span class="mw-page-title-main">Emirates Flight 407</span> 2009 aviation accident in Melbourne, Australia

Emirates Flight 407 was a scheduled international passenger flight operated by Emirates from Auckland to Dubai with a stopover in Melbourne, operated by an Airbus A340-500 aircraft. On 20 March 2009, the flight failed to take off properly at Melbourne Airport, hitting several structures at the end of the runway before climbing and then returning to the airport for a safe landing. Although no fatalities or injuries resulted, damage to the aircraft was severe enough for the event to be classified by Australian Transport Safety Bureau as an "accident". It was subsequently determined that a data-entry error resulted in insufficient engine thrust during take off. It has been described "as close as we have ever come to a major aviation catastrophe in Australia" by aviation officials.

<span class="mw-page-title-main">Rotation (aeronautics)</span>

In aviation, rotation refers to the action of applying back pressure to a control device, such as a yoke, side-stick or centre stick, to lift the nose wheel off the ground during takeoff. An aircraft moves at any given moment in one or more of three axes: roll, pitch, and yaw. Displacement along any of these axes is a form of rotation, but the term "rotation" in relation to takeoff is limited to the moment during which the aircraft's nose rises from the ground: the aircraft rotates around its lateral axis.

<span class="mw-page-title-main">Shipborne rolling vertical landing</span> Method of aircraft landing

Shipborne rolling vertical landing (SRVL) is a method used to land a V/STOL aircraft that uses both the vertical thrust from the jet engine and lift from the wings.

Engine failure on takeoff (EFTO) is a situation, when flying an aircraft, where an engine has failed, or is not delivering sufficient power, at any time between brake release and the wheels leaving the ground / V2. The phases of flight are delineated to allow simplified standard procedures for different aircraft types to be developed. If an aircraft suffered engine failure on takeoff, the standard procedure for most aircraft would be to abort the takeoff.

<span class="mw-page-title-main">Sita Air Flight 601</span> 2012 aviation accident

Sita Air Flight 601 (ST601/STA601) was a Nepalese domestic passenger flight, operated by Sita Air from Tribhuvan International Airport in Nepal's capital Kathmandu to Tenzing-Hillary Airport in Lukla. On 28 September 2012, the Dornier 228 serving the route crashed while attempting an emergency landing at Kathmandu shortly after takeoff, killing all 19 people on board.

The minimum control speed (VMC) of a multi-engine aircraft is a V-speed that specifies the calibrated airspeed below which directional or lateral control of the aircraft can no longer be maintained, after the failure of one or more engines. The VMC only applies if at least one engine is still operative, and will depend on the stage of flight. Indeed, multiple VMCs have to be calculated for landing, air travel, and ground travel, and there are more still for aircraft with four or more engines. These are all included in the aircraft flight manual of all multi-engine aircraft. When design engineers are sizing an airplane's vertical tail and flight control surfaces, they have to take into account the effect this will have on the airplane's minimum control speeds.

<span class="mw-page-title-main">Ski-jump (aviation)</span> Take-off ramp for aircraft

In aviation, a ski-jump is an upward-curved ramp that allows aircraft to take off from a runway that is shorter than the aircraft's required takeoff roll. By forcing the aircraft upwards, lift-off can be achieved at a lower airspeed than that required for sustained flight, while allowing the aircraft to accelerate to such speed in the air rather than on the runway. Ski-jumps are commonly used to launch airplanes from aircraft carriers that lack catapults.

<span class="mw-page-title-main">Capitol International Airways Flight C2C3/26</span> 1970 Aviation accident involving a Douglas DC-8

Capitol International Airways Flight C2C3/26 was a chartered McDonnell Douglas DC-8 Military Airlift Command (MAC) contract flight operated by Capitol Air from McChord Field in Tacoma to Cam Ranh Bay in Southern Vietnam via stopovers at Anchorage and at Yokota Air Base in Japan. The aircraft crashed after a botched take-off attempt from Runway 6R at Ted Stevens Anchorage International Airport on November 27, 1970. Of the 229 persons aboard the jet, 47 perished due to the post-crash fire with 49 persons injured.

References

  1. 1 2 V-speeds and Takeoff Performance #265,18,Balanced Field Takeoff (Balanced), archived from the original (ppt) on 27 February 2012, retrieved 8 July 2013
  2. Balanced field length , retrieved 22 September 2009
  3. Balanced field length, archived from the original on 21 April 2021, retrieved 22 September 2009
  4. "If we let A be the distance traveled by the airplane along the ground from the original starting point to the point where V1 is reached, and we let B be the additional distance traveled with an engine failure (the same distance to clear an obstacle or to brake to a stop), then the balanced field length is by definition the total distance A+B." Anderson, John D. Jr (1999), Aircraft Performance and Design, Section 6.7, McGraw-Hill, ISBN   0-07-116010-8
  5. "Code of Federal Regulations. Title 14 Chapter I Subchapter C Part 25 Subpart B Performance, Section 25.113 Takeoff distance and takeoff run". ecfr.gov. Federal Register. Retrieved 12 October 2022.
  6. "Code of Federal Regulations. Title 14 Chapter I Subchapter C Part 25 Subpart B Performance, Section 25.109 Accelerate-stop distance". ecfr.gov. Federal Register. Retrieved 12 October 2022.
  7. 1 2 Swatton, Peter J. (30 April 2008). Aircraft Performance Theory for Pilots. John Wiley & Sons. p. 139. ISBN   978-0-470-69305-6 . Retrieved 12 October 2022.
  8. Croucher, Phil (18 May 2021). EASA Professional Pilot Studies. p. 9-84. ISBN   979-8-5062-2969-8 . Retrieved 13 October 2022.
  9. Goudreault, Vincent (2013). "Algorithmic Approach for Algebraic Derivation of Time and Distance to Speed during Variable Acceleration". SAE Technical Paper Series. Vol. 1. doi:10.4271/2013-01-2324.
  10. Chapter 6-5 Airborne Trailblazer Archived 29 September 2006 at the Wayback Machine
  11. Pinder, S.D., Takeoff Performance Monitoring in Far-Northern Regions: An Application of the Global Positioning System, doctoral thesis, University of Saskatchewan, 2002
  12. Srivatsan, R., Takeoff Performance Monitoring, doctoral thesis, University of Kansas, 1986
  13. Khatwa, R., The Development of a Takeoff Performance Monitor, doctoral thesis, University of Bristol, 1991