S-72 RSRA | |
---|---|
The S-72 in flight with a main rotor | |
Role | Experimental compound helicopter |
Manufacturer | Sikorsky Aircraft |
First flight | 12 October 1976 |
Number built | 2 |
The Sikorsky S-72 was an experimental Sikorsky Aircraft compound helicopter developed as the Rotor Systems Research Aircraft (RSRA) for the National Aeronautics and Space Administration (NASA) and the United States Army. The RSRA was a testbed for rotor and propulsion systems for high-speed. [1]
Sikorsky and Bell Helicopters competed for the RSRA contract. [1] Bell's preferred proposal was the "Bell 646A" with rotors based on the Bell 240 UTTAS; the alternative was the smaller "Bell 646B" based on the Bell 309 KingCobra. [2] Sikorsky proposed either a new aircraft [3] or a modified Sikorsky S-67 Blackhawk with the rotor and gearbox from the Sikorsky S-61. [4] Sikorsky won the contract for two aircraft in January 1974. [1] The modified S-67 became the S-72.[ citation needed ]
The S-72 could be fitted with wings and General Electric TF34 turbofans to allow compound helicopter configurations to be experimentally investigated at speeds up to 300 knots (560 km/h; 350 mph). In addition, it could fly as a fixed-wing aircraft without a main rotor. [5]
Unique among helicopters of its time, it was fitted with a crew emergency extraction system. This system, when activated, fired explosive bolts that severed the main rotor blades, escape panels were blown off the roof of the aircraft. The crew was then extracted using rockets, rather than by a traditional ejection seat as on fixed-wing aircraft. [6] [7]
The RSRA was a pure research aircraft developed to fill the void between design analysis, wind tunnel testing, and flight results of rotor aircraft. The joint NASA/Army project began in December 1970, first flight on October 12, 1976, with the first of two aircraft arriving from Sikorsky to NASA on February 11, 1979.
One notable test performed with the RSRA was the use of the main and tail rotor load measurement system to determine the vertical drag of the airframe. [8]
In 1981, NASA and the US Army solicited proposals for fitting a four-bladed main rotor to the RSRA. Sikorsky proposed fitting a UH-60A main rotor to the RSRA in their proposal, [9] while Hughes Helicopters proposed fitting a YAH-64A main rotor, [10] and Boeing Vertol proposed fitting a YUH-61A or BV-347 main rotor. [11] In the end, this program did not proceed.[ citation needed ]
The X-Wing Circulation Control Rotor Concept was developed in the mid-1970s by the David W. Taylor Naval Ship Research and Development Center under DARPA funding. [12] In October 1976, Lockheed Corporation won a DARPA contract to develop a large-scale rotor to test the concept. [13]
The X-Wing was conceived to complement rather than replace helicopters and fixed-wing aircraft. The X-Wing was intended to be used in roles such as air-to-air and air-to-ground operations, as well as airborne early warning, search and rescue and anti-submarine warfare. These roles could take advantage of the aircraft's ability to hover and maneuver at low speeds and to cruise at high speeds. [14]
Intended to take off vertically like a helicopter, the craft's rigid rotors could be stopped in mid-flight to act as X-shaped wings to provide additional lift during forward flight, as well as having more conventional wings. Instead of controlling lift by altering the angle of attack of its blades as more conventional helicopters do, the craft used compressed air fed from the engines and expelled from its blades to generate a virtual wing surface, similar to blown flaps on a conventional platform. Computerized valves made sure the compressed air came from the correct edge of the rotor, the correct edge changing as the rotor rotated. [15]
In late 1983, Sikorsky received a contract to modify one S-72 RSRA into a demonstration testbed for the X-Wing rotor system. The modified airframe was rolled out in 1986. While many of the aircraft's technical issues had been resolved, with plans for it to begin flight tests with the rotor/wing system, it never flew. Budgetary requirements led to the program being canceled in 1988. [16] [17] [18]
Data from Jane's all the World's Aircraft 1977–78 [19]
General characteristics
Performance
Related development
Aircraft of comparable role, configuration, and era
Related lists
The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.
The Bell XV-15 is an American tiltrotor VTOL aircraft. It was the second successful experimental tiltrotor aircraft and the first to demonstrate the concept's high speed performance relative to conventional helicopters.
The Piasecki X-49 "SpeedHawk" is an American four-bladed, twin-engined experimental high-speed compound helicopter developed by Piasecki Aircraft. The X-49A is based on the airframe of a Sikorsky YSH-60F Seahawk, but utilizes Piasecki's proprietary vectored thrust ducted propeller (VTDP) design and includes the addition of lifting wings. The concept of the experimental program was to apply the VTDP technology to a production military helicopter to determine any benefit gained through increases in performance or useful load.
The Sikorsky S-67 Blackhawk was a private-venture, prototype attack helicopter built in 1970 with Sikorsky Aircraft research and development (R&D) funds. A tandem, two-seat aircraft designed around the dynamic drive and rotor systems of the Sikorsky S-61, it was designed to serve as an attack helicopter or to transport up to eight troops into combat.
The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.
The Lockheed AH-56 Cheyenne is an attack helicopter developed by Lockheed for the United States Army. It rose from the Army's Advanced Aerial Fire Support System (AAFSS) program to field the service's first dedicated attack helicopter. Lockheed designed the Cheyenne using a four-blade rigid-rotor system and configured the aircraft as a compound helicopter with low-mounted wings and a tail-mounted thrusting propeller driven by a General Electric T64 turboshaft engine. The Cheyenne was to have a high-speed dash capability to provide armed escort for the Army's transport helicopters, such as the Bell UH-1 Iroquois.
A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".
A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.
The Bell 533 was a research helicopter built by Bell Helicopter under contract with the United States Army during the 1960s, to explore the limits and conditions experienced by helicopter rotors at high airspeeds. The helicopter was a YH-40—a preproduction version of the UH-1 Iroquois—modified and tested in several helicopter and compound helicopter configurations. The Bell 533 was referred to as the High Performance Helicopter (HPH) by the Army, and reached a top speed of 274.6 knots in 1969, before being retired.
The Lockheed XH-51 was an American single-engine experimental helicopter designed by Lockheed Aircraft, utilizing a rigid rotor and retractable skid landing gear. The XH-51 was selected as the test vehicle for a joint research program conducted by the United States Army and United States Navy to explore rigid rotor technology.
The Sikorsky S-69 is an American experimental compound helicopter developed by Sikorsky Aircraft as the demonstrator of the co-axial Advancing Blade Concept (ABC) with United States Army and NASA funding.
The Sikorsky X2 is an experimental high-speed compound helicopter with coaxial rotors, developed by Sikorsky Aircraft, that made its first flight in 2008 and was officially retired in 2011.
The McDonnell XV-1 is an experimental Convertiplane developed by McDonnell Aircraft for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph, faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.
The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.
The Sikorsky XV-2, also known by the Sikorsky Aircraft model number S-57, was a planned experimental stoppable rotor aircraft, designated as a convertiplane, developed for a joint research program between the United States Air Force and the United States Army. The program was canceled before construction of the prototype began.
The Sikorsky S-97 Raider is a high-speed scout and attack compound helicopter based on the Advancing Blade Concept (ABC) with a coaxial rotor system under development by Sikorsky Aircraft. Sikorsky planned to offer it for the United States Army's Armed Aerial Scout program, along with other possible uses. The S-97 made its maiden flight on 22 May 2015.
The Vertical Take-Off and Landing Experimental Aircraft program was an American research project sponsored by the Defense Advanced Research Projects Agency (DARPA). The goal of the program was to demonstrate a VTOL aircraft design that can take off vertically and efficiently hover, while flying faster than conventional rotorcraft. There have been many previous attempts, most of them unsuccessful as of 2015.
The Sikorsky S-73 was a proposed aircraft design to meet the United States Army requirement in 1970 for a Heavy Lift Helicopter (HLH) capable of carrying 45,000 lb, a lifting capacity more than twice that of Sikorsky's most powerful helicopter at that time.
A cruciform wing is a set of four individual wings arranged in the shape of a cross. The cross may take either of two forms; the wings may be equally spaced around the cross-section of the fuselage, lying in two planes at right angles, as on a typical missile, or they may lie together in a single horizontal plane about a vertical axis, as in the cruciform rotor wing or X-wing.