Afterburner

Last updated

A U.S. Navy F/A-18 Hornet being launched from the catapult at maximum power FA18 on afterburner.jpg
A U.S. Navy F/A-18 Hornet being launched from the catapult at maximum power

An afterburner (or reheat in British English) is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor ("burner") in the jet pipe behind (i.e., "after") the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its added weight penalty, but at the cost of increased fuel consumption (decreased fuel efficiency) which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption. [1]

Contents

SR-71 Blackbird in flight with J58 engines at maximum power, with numerous shock diamonds visible in the exhaust SR-71 Blackbird afterburn.jpg
SR-71 Blackbird in flight with J58 engines at maximum power, with numerous shock diamonds visible in the exhaust

Jet engines are referred to as operating wet when afterburning and dry when not. [2] An engine producing maximum thrust wet is at maximum power, while an engine producing maximum thrust dry is at military power. [3]

Principle

The first jet engine with after-burner was the E variant of Jumo 004. [4]

Rear part of a sectioned Rolls-Royce Turbomeca Adour. The afterburner with its four combustion rings is clearly seen at the center. Rear view of afterburner in sectioned Rolls-Royce Turbomeca Adour turbofan.jpg
Rear part of a sectioned Rolls-Royce Turbomeca Adour. The afterburner with its four combustion rings is clearly seen at the center.

Jet-engine thrust is an application of Newton's reaction principle, in which the engine generates thrust because it increases the momentum of the air passing through it. [5] Thrust depends on two things: the velocity of the exhaust gas and the mass of the gas exiting the nozzle. A jet engine can produce more thrust by either accelerating the gas to a higher velocity or ejecting a greater mass of gas from the engine. [6] Designing a basic turbojet engine around the second principle produces the turbofan engine, which creates slower gas, but more of it. Turbofans are highly fuel efficient and can deliver high thrust for long periods of time, but the design tradeoff is a large size relative to the power output. Generating increased power with a more compact engine for short periods can be achieved using an afterburner. The afterburner increases thrust primarily by accelerating the exhaust gas to a higher velocity. [7]

The following values and parameters are for an early jet engine, the Pratt & Whitney J57, stationary on the runway, [8] and illustrate the high values of afterburner fuel flow, gas temperature and thrust compared to those for the engine operating within the temperature limitations for its turbine.

The highest temperature in the engine (about 3,700 °F (2,040 °C) [9] ) occurs in the combustion chamber, where fuel is burned (at an approximate rate of 8,520 lb/h (3,860 kg/h)) in a relatively small proportion of the air entering the engine. The combustion products have to be diluted with air from the compressor to bring the gas temperature down to a specific value, known as the Turbine Entry Temperature (TET) (1,570 °F (850 °C)), which gives the turbine an acceptable life. [10] Having to reduce the temperature of the combustion products by a large amount is one of the primary limitations on how much thrust can be generated (10,200 lbf (45,000 N)). Burning all the oxygen delivered by the compressor stages would create temperatures (3,700 °F (2,040 °C)) high enough to significantly weaken the internal structure of the engine, but by mixing the combustion products with unburned air from the compressor at (600 °F (316 °C)) a substantial amount of oxygen (fuel/air ratio 0.014 compared to a no-oxygen-remaining value 0.0687) is still available for burning large quantities of fuel (25,000 lb/h (11,000 kg/h)) in an afterburner. The gas temperature decreases as it passes through the turbine (to 1,013 °F (545 °C)). The afterburner combustor reheats the gas, but to a much higher temperature (2,540 °F (1,390 °C)) than the TET (1,570 °F (850 °C)). As a result of the temperature rise in the afterburner combustor, the gas is accelerated, firstly by the heat addition, known as Rayleigh flow, then by the nozzle to a higher exit velocity than that which occurs without the afterburner. The mass flow is also slightly increased by the addition of the afterburner fuel. The thrust with afterburning is 16,000 lbf (71,000 N).

The visible exhaust may show shock diamonds , which are caused by shock waves formed due to slight differences between ambient pressure and the exhaust pressure. This interaction causes oscillations in the exhaust jet diameter over a short distance and causes visible banding where pressure and temperature are highest.

Thrust augmentation by heating bypass air

The plenum-chamber-burning Bristol Siddeley BS100 engine had thrust augmentation at the front nozzles only. Bristol Siddeley BS100.JPG
The plenum-chamber-burning Bristol Siddeley BS100 engine had thrust augmentation at the front nozzles only.

Thrust may be increased by burning fuel in a turbofan's cold bypass air, instead of the mixed cold and hot flows as in most afterburning turbofans.

An early augmented turbofan, the Pratt & Whitney TF30, used separate burning zones for the bypass and core flows with three of seven concentric spray rings in the bypass flow. [11] In comparison, the afterburning Rolls-Royce Spey used a twenty chute mixer before the fuel manifolds.

Plenum chamber burning (PCB) was partially developed for the vectored thrust Bristol Siddeley BS100 engine for the Hawker Siddeley P.1154 until the program was cancelled in 1965. The cold bypass and hot core flows were split between two pairs of nozzles, front and rear, in the same manner as the Rolls-Royce Pegasus, and fuel was burned in the fan air before it left the front nozzles. It would have given greater thrust for take-off and supersonic performance in an aircraft similar to, but bigger than, the Hawker Siddeley Harrier. [12]

Duct heating was used by Pratt & Whitney for their JTF17 turbofan proposal for the U.S. Supersonic Transport Program in 1964 and a demonstrator engine was run. [13] The duct heater used an annular combustor and would be used for takeoff, climb and cruise at Mach 2.7 with different amounts of augmentation depending on aircraft weight. [14]

Design

Afterburners on a British Eurofighter Typhoon A Typhoon F2 fighter ignites its afterburners whilst taking off from RAF Coningsby MOD 45147957.jpg
Afterburners on a British Eurofighter Typhoon

A jet engine afterburner is an extended exhaust section containing extra fuel injectors. Since the jet engine upstream (i.e., before the turbine) will use little of the oxygen it ingests, additional fuel can be burned after the gas flow has left the turbines. When the afterburner is turned on, fuel is injected and igniters are fired. The resulting combustion process increases the afterburner exit (nozzle entry) temperature, resulting in a significant increase in engine thrust. In addition to the increase in afterburner exit stagnation temperature, there is also an increase in nozzle mass flow (i.e. afterburner entry mass flow plus the effective afterburner fuel flow), but a decrease in afterburner exit stagnation pressure (owing to a fundamental loss due to heating plus friction and turbulence losses).

The resulting increase in afterburner exit volume flow is accommodated by increasing the throat area of the exit nozzle. Otherwise, if pressure is not released, the gas can flow upstream and re-ignite, possibly causing a compressor stall (or fan surge in a turbofan application). The first designs, e.g. Solar afterburners used on the F7U Cutlass, F-94 Starfire and F-89 Scorpion, had 2-position eyelid nozzles. [15] Modern designs incorporate not only variable-geometry (VG) nozzles but multiple stages of augmentation via separate spray bars.

To a first order, the gross thrust ratio (afterburning/dry) is directly proportional to the root of the stagnation temperature ratio across the afterburner (i.e. exit/entry).

Limitations

An F-4K Phantom of the Royal Navy on a catapult aboard an aircraft carrier deploys full afterburner prior to launch Phantom FG1 of 892 NAS is launched from USS Independence (CV-62), November 1975.jpg
An F-4K Phantom of the Royal Navy on a catapult aboard an aircraft carrier deploys full afterburner prior to launch

Due to their high fuel consumption, afterburners are only used for short-duration, high-thrust requirements. These include heavy-weight or short-runway take-offs, assisting catapult launches from aircraft carriers, and during air combat. A notable exception is the Pratt & Whitney J58 engine used in the SR-71 Blackbird which used its afterburner for prolonged periods and was refueled in-flight as part of every reconnaissance mission.

An afterburner has a limited life to match its intermittent use. The J58 was an exception with a continuous rating. This was achieved with thermal barrier coatings on the liner and flame holders [16] and by cooling the liner and nozzle with compressor bleed air [17] instead of turbine exhaust gas.

Efficiency

In heat engines such as jet engines, efficiency is highest when combustion occurs at the highest pressure and temperature possible, and expanded down to ambient pressure (see Carnot cycle).

Since the exhaust gas already has a reduced oxygen content, owing to previous combustion, and since the fuel is not burning in a highly compressed air column, the afterburner is generally inefficient in comparison to the main combustion process. Afterburner efficiency also declines significantly if, as is usually the case, the inlet and tailpipe pressure decreases with increasing altitude.[ citation needed ]

This limitation applies only to turbojets. In a military turbofan combat engine, the bypass air is added into the exhaust, thereby increasing the core and afterburner efficiency. In turbojets the gain is limited to 50%, whereas in a turbofan it depends on the bypass ratio and can be as much as 70%. [18]

However, as a counterexample, the SR-71 had reasonable efficiency at high altitude in afterburning ("wet") mode owing to its high speed (mach 3.2) and correspondingly high pressure due to ram intake.

Influence on cycle choice

Afterburning has a significant influence upon engine cycle choice.

Lowering the fan pressure ratio decreases specific thrust (both dry and wet afterburning), but results in a lower temperature entering the afterburner. Since the afterburning exit temperature is effectively fixed,[ why? ] the temperature rise across the unit increases, raising the afterburner fuel flow. The total fuel flow tends to increase faster than the net thrust, resulting in a higher specific fuel consumption (SFC). However, the corresponding dry power SFC improves (i.e. lower specific thrust). The high temperature ratio across the afterburner results in a good thrust boost.

If the aircraft burns a large percentage of its fuel with the afterburner alight, it pays to select an engine cycle with a high specific thrust (i.e. high fan pressure ratio/low bypass ratio). The resulting engine is relatively fuel efficient with afterburning (i.e. Combat/Take-off), but thirsty in dry power. If, however, the afterburner is to be hardly used, a low specific thrust (low fan pressure ratio/high bypass ratio) cycle will be favored. Such an engine has a good dry SFC, but a poor afterburning SFC at Combat/Take-off.

Often the engine designer is faced with a compromise between these two extremes.

History

MiG-23 afterburner MiG-23 afterburner exhaust airbrakes.jpg
MiG-23 afterburner

The Caproni Campini C.C.2 motorjet, designed by the Italian engineer Secondo Campini, was the first aircraft to incorporate an afterburner. The first flight of a C.C.2, with its afterburners operating, took place on 11 April 1941. [19] [20]

Early British afterburner ("reheat") work included flight tests on a Rolls-Royce W2/B23 in a Gloster Meteor I in late 1944 and ground tests on a Power Jets W2/700 engine in mid-1945. This engine was destined for the Miles M.52 supersonic aircraft project. [21]

Early American research on the concept was done by NACA, in Cleveland, Ohio, leading to the publication of the paper "Theoretical Investigation of Thrust Augmentation of Turbojet Engines by Tail-pipe Burning" in January 1947. [22]

American work on afterburners in 1948 resulted in installations on early straight-wing jets such as the Pirate, Starfire and Scorpion. [23]

The new Pratt & Whitney J48 turbojet, at 8,000 lbf (36 kN) thrust with afterburners, would power the Grumman swept-wing fighter F9F-6, which was about to go into production. Other new Navy fighters with afterburners included the Chance Vought F7U-3 Cutlass, powered by two 6,000 lbf (27 kN) thrust Westinghouse J46 engines.

In the 1950s, several large afterburning engines were developed, such as the Orenda Iroquois and the British de Havilland Gyron and Rolls-Royce Avon RB.146 variants. The Avon and its variants powered the English Electric Lightning, the first supersonic aircraft in RAF service. The Bristol-Siddeley/Rolls-Royce Olympus was fitted with afterburners for use with the BAC TSR-2. This system was designed and developed jointly by Bristol-Siddeley and Solar of San Diego. [24] The afterburner system for the Concorde was developed by Snecma.

Afterburners are generally used only in military aircraft, and are considered standard equipment on fighter aircraft. The handful of civilian planes that have used them include some NASA research aircraft, the Tupolev Tu-144, Concorde and the White Knight of Scaled Composites. Concorde flew long distances at supersonic speeds. Sustained high speeds would be impossible with the high fuel consumption of afterburner, and the plane used afterburners at takeoff and to minimize time spent in the high-drag transonic flight regime. Supersonic flight without afterburners is referred to as supercruise.

A turbojet engine equipped with an afterburner is called an "afterburning turbojet", whereas a turbofan engine similarly equipped is sometimes called an "augmented turbofan".[ citation needed ]

A "dump-and-burn" is an airshow display feature where fuel is jettisoned, then intentionally ignited using the afterburner. A spectacular flame combined with high speed makes this a popular display for airshows, or as a finale to fireworks. Fuel dumping is used primarily to reduce the weight of an aircraft to avoid a heavy, high-speed landing. Other than for safety or emergency reasons, fuel dumping does not have a practical use.

See also

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Ramjet</span> Supersonic atmospheric jet engine

A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to Mach 6.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of references to the preceding generation engine technology of the turbojet and the additional fan stage. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">Pratt & Whitney F119</span> American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

<span class="mw-page-title-main">Pratt & Whitney F100</span> Afterburning turbofan engine that powers the F-15 Eagle and F-16 Fighting Falcon

The Pratt & Whitney F100 is a low bypass afterburning turbofan engine. It was designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle. The engine was to be developed in tandem with the F401 which shares a similar core but with an upscaled fan for the U.S. Navy's F-14 Tomcat. The F401 was later abandoned due to costs and reliability issues. The F100 also powered the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, burner can, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high-pressure air by the compression system. The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.

A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970s from the rising cost of fuel.

<span class="mw-page-title-main">Variable cycle engine</span> Aircraft propulsion system efficient at a range of speeds higher and lower than sounds

A variable cycle engine (VCE), also referred to as adaptive cycle engine (ACE), is an aircraft jet engine that is designed to operate efficiently under mixed flight conditions, such as subsonic, transonic and supersonic.

Specific thrust is the thrust per unit air mass flowrate of a jet engine and can be calculated by the ratio of net thrust/total intake airflow.

<span class="mw-page-title-main">Rolls-Royce/Snecma Olympus 593</span> 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat, which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma, derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine, making BSEL the Bristol Engine Division of Rolls-Royce.

<span class="mw-page-title-main">General Electric GE4</span> Turbojet engine by General Electric

The General Electric GE4 turbojet engine was designed in the late 1960s as the powerplant for the Boeing 2707 supersonic transport. The GE4 was a nine-stage, single-shaft, axial-flow turbojet based largely on the General Electric YJ93 which powered the North American XB-70 bomber. The GE4 was the most powerful engine of its era, producing 50,000 lbf (220 kN) dry, and 65,000 lbf (290 kN) with afterburner. The Boeing 2707 was cancelled in 1971, putting an end to further work on the GE4.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

<span class="mw-page-title-main">Volvo RM8</span> Low-bypass afterburning turbofan jet engine

The Volvo RM8 is a low-bypass afterburning turbofan jet engine developed for the Saab 37 Viggen fighter. An augmented bypass engine was required to give both better fuel consumption at cruise speeds and higher thrust boosting for its short take-off requirement than would be possible using a turbojet. In 1962, the civil Pratt & Whitney JT8D engine, as used for airliners such as the Boeing 727, was chosen as the only engine available which could be modified to meet the Viggen requirements. The RM8 was a licensed-built version of the JT8D, but extensively modified for supersonic speeds, with a Swedish-designed afterburner, and was produced by Svenska Flygmotor.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

The familiar study of jet aircraft treats jet thrust with a "black box" description which only looks at what goes into the jet engine, air and fuel, and what comes out, exhaust gas and an unbalanced force. This force, called thrust, is the sum of the momentum difference between entry and exit and any unbalanced pressure force between entry and exit, as explained in "Thrust calculation".

<span class="mw-page-title-main">Boom Symphony</span> Supersonic turbofan engine design

The Boom Symphony is a medium-bypass turbofan engine under development by Boom Technology for use on its Overture supersonic airliner. The engine is designed to produce 35,000 pounds of thrust at takeoff, sustain Overture supercruise at Mach 1.7, and burn sustainable aviation fuel exclusively.

References

  1. Gas Turbine Design, Components and System Design Integration, Meinhard T. Schobeiri, ISBN   978 3 319 58376 1, p. 12/24
  2. Ronald D. Flack (2005). Fundamentals of jet propulsion with applications. Cambridge, UK: Cambridge University Press. ISBN   0-521-81983-0.
  3. Graham, Richard H. (July 15, 2008). Flying the SR-71 Blackbird: In the Cockpit on a Secret Operational Mission. MBI Publishing Company. p. 56. ISBN   9781610600705.
  4. Aeronautical Research in Germany: From Lilienthal until Today. Springer. December 6, 2012. ISBN   978-3-642-18484-0.
  5. "General Thrust Equation". www.grc.nasa.gov. Retrieved March 19, 2018.
  6. Lloyd Dingle; Michael H Tooley (September 23, 2013). Aircraft Engineering Principles. Routledge. pp. 189–. ISBN   978-1-136-07278-9.
  7. Otis E. Lancaster (December 8, 2015). Jet Propulsion Engines. Princeton University Press. pp. 176–. ISBN   978-1-4008-7791-1.
  8. The Aircraft Gas Turbine Engine and its operation, Part No. P&W 182408, P&W Operating Instruction 200, revised December 1982, United Technologies Pratt & Whitney, Figure 6-4
  9. AGARD-LS-183, Steady and Transient Performance Prediction, May 1982, ISBN   92 835 0674 X, section 2-3
  10. Zellman Warhaft (1997). An Introduction to Thermal-Fluid Engineering: The Engine and the Atmosphere. Cambridge University Press. pp. 97–. ISBN   978-0-521-58927-7.
  11. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720019364.pdf, Figure 2 schematic of afterburner
  12. "1962 | 2469 | Flight Archive". Flightglobal.com. Retrieved November 9, 2018.
  13. The Engines of Pratt & Whitney: A Technical History, Jack Connors2009, ISBN   978 1 60086 711 8. p.380
  14. Pratt & Whitney (October 10, 1972). Pratt & Whitney Aircraft PWA FP 66-100 Report D (PDF) (Report). Vol. 3. Defense Technical Information Center. Archived from the original (PDF) on June 10, 2020.
  15. SAE 871354 "The First U.S. Afterburner Development"
  16. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840004244.pdf, p.5
  17. http://roadrunnersinternationale.com/pw_tales.htm, p.3
  18. "Basic Study of the Afterburner" Yoshiyuki Ohya, NASA TT F-13,657
  19. Buttler, Tony (September 19, 2019). Jet Prototypes of World War II: Gloster, Heinkel, and Caproni Campini's wartime jet programmes. Bloomsbury Publishing. ISBN   978-1-4728-3597-0.
  20. Alegi, Gregory (January 15, 2014). "Secondo's Slow Burner, Campini Caproni and the C.C.2". The Aviation Historian . No. 6. United Kingdom. p. 76. ISSN   2051-1930.
  21. "Fast Jets-the history of reheat development at Derby". Cyril Elliott ISBN   1 872922 20 1 p14,16
  22. Bohanon, H R. "Theoretical investigation of thrust augmentation of turbojet engines by tail-pipe burning" (PDF). ntrs.nasa.gov.
  23. "Afterburning: A Review of Current American Practice" Flight magazine 21 November 1952 p648
  24. "Bristol/Solar reheat" Flight magazine 20 September 1957 p472