Rayleigh flow refers to frictionless, non-adiabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach number along the duct. It can be shown that for calorically perfect flows the maximum entropy occurs at M = 1. Rayleigh flow is named after John Strutt, 3rd Baron Rayleigh.
The Rayleigh flow model begins with a differential equation that relates the change in Mach number with the change in stagnation temperature, T0. The differential equation is shown below.
Solving the differential equation leads to the relation shown below, where T0* is the stagnation temperature at the throat location of the duct which is required for thermally choking the flow.
These values are significant in the design of combustion systems. For example, if a turbojet combustion chamber has a maximum temperature of T0* = 2000 K, T0 and M at the entrance to the combustion chamber must be selected so thermal choking does not occur, which will limit the mass flow rate of air into the engine and decrease thrust.
For the Rayleigh flow model, the dimensionless change in entropy relation is shown below.
The above equation can be used to plot the Rayleigh line on a Mach number versus ΔS graph, but the dimensionless enthalpy, H, versus ΔS diagram is more often used. The dimensionless enthalpy equation is shown below with an equation relating the static temperature with its value at the choke location for a calorically perfect gas where the heat capacity at constant pressure, cp, remains constant.
The above equation can be manipulated to solve for M as a function of H. However, due to the form of the T/T* equation, a complicated multi-root relation is formed for M = M(T/T*). Instead, M can be chosen as an independent variable where ΔS and H can be matched up in a chart as shown in Figure 1. Figure 1 shows that heating will increase an upstream, subsonic Mach number until M = 1.0 and the flow chokes. Conversely, adding heat to a duct with an upstream, supersonic Mach number will cause the Mach number to decrease until the flow chokes. Cooling produces the opposite result for each of those two cases. The Rayleigh flow model reaches maximum entropy at M = 1.0 For subsonic flow, the maximum value of H occurs at M = 0.845. This indicates that cooling, instead of heating, causes the Mach number to move from 0.845 to 1.0 This is not necessarily correct as the stagnation temperature always increases to move the flow from a subsonic Mach number to M = 1, but from M = 0.845 to M = 1.0 the flow accelerates faster than heat is added to it. Therefore, this is a situation where heat is added but T/T* decreases in that region.
The area and mass flow rate are held constant for Rayleigh flow. Unlike Fanno flow, the Fanning friction factor, f, remains constant. These relations are shown below with the * symbol representing the throat location where choking can occur.
Differential equations can also be developed and solved to describe Rayleigh flow property ratios with respect to the values at the choking location. The ratios for the pressure, density, static temperature, velocity and stagnation pressure are shown below, respectively. They are represented graphically along with the stagnation temperature ratio equation from the previous section. A stagnation property contains a '0' subscript.
The Rayleigh flow model has many analytical uses, most notably involving aircraft engines. For instance, the combustion chambers inside turbojet engines usually have a constant area and the fuel mass addition is negligible. These properties make the Rayleigh flow model applicable for heat addition to the flow through combustion, assuming the heat addition does not result in dissociation of the air-fuel mixture. Producing a shock wave inside the combustion chamber of an engine due to thermal choking is very undesirable due to the decrease in mass flow rate and thrust. Therefore, the Rayleigh flow model is critical for an initial design of the duct geometry and combustion temperature for an engine.
The Rayleigh flow model is also used extensively with the Fanno flow model. These two models intersect at points on the enthalpy-entropy and Mach number-entropy diagrams, which is meaningful for many applications. However, the entropy values for each model are not equal at the sonic state. The change in entropy is 0 at M = 1 for each model, but the previous statement means the change in entropy from the same arbitrary point to the sonic point is different for the Fanno and Rayleigh flow models. If initial values of si and Mi are defined, a new equation for dimensionless entropy versus Mach number can be defined for each model. These equations are shown below for Fanno and Rayleigh flow, respectively.
Figure 3 shows the Rayleigh and Fanno lines intersecting with each other for initial conditions of si = 0 and Mi = 3.0 The intersection points are calculated by equating the new dimensionless entropy equations with each other, resulting in the relation below.
The intersection points occur at the given initial Mach number and its post-normal shock value. For Figure 3, these values are M = 3.0 and 0.4752, which can be found the normal shock tables listed in most compressible flow textbooks. A given flow with a constant duct area can switch between the Rayleigh and Fanno models at these points.
The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Czech physicist and philosopher Ernst Mach.
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.
Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.
Centrifugal compressors, sometimes called impeller compressors or radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery.
The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave in a one-dimensional flow in fluids or a one-dimensional deformation in solids. They are named in recognition of the work carried out by Scottish engineer and physicist William John Macquorn Rankine and French engineer Pierre Henri Hugoniot.
A de Laval nozzle is a tube which is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy. De Laval nozzles are widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, Cp.
In fluid dynamics, stagnation pressure is the static pressure at a stagnation point in a fluid flow. At a stagnation point the fluid velocity is zero. In an incompressible flow, stagnation pressure is equal to the sum of the free-stream static pressure and the free-stream dynamic pressure.
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.
The Chapman–Jouguet condition holds approximately in detonation waves in high explosives. It states that the detonation propagates at a velocity at which the reacting gases just reach sonic velocity as the reaction ceases.
A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, a two-dimensional simple wave, is a centered expansion process that occurs when a supersonic flow turns around a convex corner. The fan consists of an infinite number of Mach waves, diverging from a sharp corner. When a flow turns around a smooth and circular corner, these waves can be extended backwards to meet at a point.
Fanno flow is the adiabatic flow through a constant area duct where the effect of friction is considered. Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios. Such tables are useful since the equations used to calculate the properties after a normal shock are cumbersome.
Isentropic nozzle flow describes the movement of a gas or fluid through a narrowing opening without an increase or decrease in entropy.
In gas dynamics, the Kantrowitz limit refers to a theoretical concept describing choked flow at supersonic or near-supersonic velocities. When an initially subsonic fluid flow experiences a reduction in cross-section area, the flow speeds up in order to maintain the same mass-flow rate, per the continuity equation. If a near supersonic flow experiences an area contraction, the velocity of the flow will increase until it reaches the local speed of sound, and the flow will be choked. This is the principle behind the Kantrowitz limit: it is the maximum amount of contraction a flow can experience before the flow chokes, and the flow speed can no longer be increased above this limit, independent of changes in upstream or downstream pressure.
A high pressure jet is a stream of pressurized fluid that is released from an environment at a significantly higher pressure than ambient pressure from a nozzle or orifice, due to operational or accidental release. In the field of safety engineering, the release of toxic and flammable gases has been the subject of many R&D studies because of the major risk that they pose to the health and safety of workers, equipment and environment. Intentional or accidental release may occur in an industrial settings like natural gas processing plants, oil refineries and hydrogen storage facilities.
In fluid dynamics, Janzen–Rayleigh expansion represents a regular perturbation expansion using the relevant mach number as the small parameter of expansion for the velocity field that possess slight compressibility effects. The expansion was first studied by O. Janzen in 1913 and Lord Rayleigh in 1916.
Mass injection flow refers to inviscid, adiabatic flow through a constant area duct where the effect of mass addition is considered. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and mass is added within the duct. Because the flow is adiabatic, unlike in Rayleigh flow, the stagnation temperature is a constant. Compressibility effects often come into consideration, though this flow model also applies to incompressible flow.