Stagnation temperature

Last updated

In thermodynamics and fluid mechanics, stagnation temperature is the temperature at a stagnation point in a fluid flow. At a stagnation point the speed of the fluid is zero and all of the kinetic energy has been converted to internal energy and is added to the local static enthalpy. In both compressible and incompressible fluid flow, the stagnation temperature is equal to the total temperature at all points on the streamline leading to the stagnation point. [1] See gas dynamics.

Contents

Derivation

Adiabatic

Stagnation temperature can be derived from the First Law of Thermodynamics. Applying the Steady Flow Energy Equation [2] and ignoring the work, heat and gravitational potential energy terms, we have:

where:

mass-specific stagnation (or total) enthalpy at a stagnation point
mass-specific static enthalpy at the point of interest along the stagnation streamline
velocity at the point of interest along the stagnation streamline

Substituting for enthalpy by assuming a constant specific heat capacity at constant pressure () we have:

or

where:

specific heat capacity at constant pressure
stagnation (or total) temperature at a stagnation point
temperature (or static temperature) at the point of interest along the stagnation streamline
velocity at the point of interest along the stagnation streamline
Mach number at the point of interest along the stagnation streamline
Ratio of Specific Heats (), ~1.4 for air at ~300 K

Flow with heat addition

q = Heat per unit mass added into the system

Strictly speaking, enthalpy is a function of both temperature and density. However, invoking the common assumption of a calorically perfect gas, enthalpy can be converted directly into temperature as given above, which enables one to define a stagnation temperature in terms of the more fundamental property, stagnation enthalpy.

Stagnation properties (e.g. stagnation temperature, stagnation pressure) are useful in jet engine performance calculations. In engine operations, stagnation temperature is often called total air temperature. A bimetallic thermocouple is often used to measure stagnation temperature, but allowances for thermal radiation must be made.

Solar thermal collectors

Performance testing of solar thermal collectors utilizes the term stagnation temperature to indicate the maximum achievable collector temperature with a stagnant fluid (no motion), an ambient temperature of 30C, and incident solar radiation of 1000W/m2. The aforementioned figures are 'worst case scenario values' that allow collector designers to plan for potential overheat scenarios in the event of collector system malfunctions. [3]

See also

Related Research Articles

Enthalpy Measure of energy in a thermodynamic system

Enthalpy, a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work required to establish the system's physical dimensions, i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation and other "energies" in chemistry are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

Heat engine System that converts heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of friction and drag.

Bernoullis principle Principle relating to fluid dynamics

In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes and non-adiabatic processes are small and can be neglected.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. At room temperature, all gases except hydrogen, helium, and neon cool upon expansion by the Joule–Thomson process when being throttled through an orifice; these three gases experience the same effect but only at lower temperatures. Most liquids such as hydraulic oils will be warmed by the Joule–Thomson throttling process.

Latent heat Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition.

Heat transfer Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Internal energy Energy contained in a system, excluding energy due to its position as a body in external force fields or its overall motion

The internal energy of a thermodynamic system is the energy contained within it. It is the energy necessary to create or prepare the system in any given internal state. It does not include the kinetic energy of motion of the system as a whole, nor the potential energy of the system as a whole due to external force fields, including the energy of displacement of the surroundings of the system. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state. The internal energy is measured as a difference from a reference zero defined by a standard state. The difference is determined by thermodynamic processes that carry the system between the reference state and the current state of interest.

Isentropic process Thermodynamic process that is reversible and adiabatic

In thermodynamics, an isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no net transfer of heat or matter. Such an idealized process is useful in engineering as a model of and basis of comparison for real processes. This is idealized as reversible processes do not occur in reality; thinking of a process as both adiabatic and reversible would show that the initial and final entropies are the same, thus, the reason it is called isentropic. Thermodynamic processes are named based on the effect they would have on the system. Even though in reality it is not necessarily possible to carry out an isentropic process, some may be approximated as such.

Isobaric process Thermodynamic process in which pressure remains constant

In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics,

Rankine cycle

The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.

Thermodynamic equations

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

In fluid dynamics, stagnation pressure is the static pressure at a stagnation point in a fluid flow. At a stagnation point the fluid velocity is zero. In an incompressible flow, stagnation pressure is equal to the sum of the free-stream static pressure and the free-stream dynamic pressure.

Thermodynamic cycle Linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system,while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state

A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat pump. At every point in the cycle, the system is in thermodynamic equilibrium, so the cycle is reversible.

Thermal efficiency

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, a steam turbine or a steam engine, a boiler, furnace, or a refrigerator for example. For a heat engine, thermal efficiency is the fraction of the energy added by heat that is converted to net work output. In the case of a refrigeration or heat pump cycle, thermal efficiency is the ratio of net heat output for heating, or removal for cooling, to energy input.

Isenthalpic process Thermodynamic process with no change in enthalpy

An isenthalpic process or isoenthalpic process is a process that proceeds without any change in enthalpy, H; or specific enthalpy, h.

Stagnation enthalpy

Stagnation enthalpy of a fluid at one point is the enthalpy of the fluid at that point at a stagnation point. It represents the enthalpy of a fluid when it is brought to rest from velocity isentropically. When the potential energy of the fluid is negligible, the stagnation enthalpy represents the total energy of a flowing fluid stream per unit mass.

Heat pump and refrigeration cycle Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are close. Heat is moved from a cold place to a warm place.

Heat Thermodynamic energy transfer, other than by thermodynamic work or by transfer of matter

In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. The various mechanisms of energy transfer that define heat are stated in the next section of this article.

Conservative temperature is a thermodynamic property of seawater. It is derived from the potential enthalpy and is recommended under the TEOS-10 standard as a replacement for potential temperature as it more accurately represents the heat content in the ocean.

Rothalpy, a short name of rotational stagnation enthalpy, is a fluid mechanical property of importance in the study of flow within rotating systems.

References

  1. Van Wylen and Sonntag, Fundamentals of Classical Thermodynamics, section 14.1
  2. Van Wylen and Sonntag, Fundamentals of Classical Thermodynamics, equation 5.50
  3. Planning and Installing Solar Thermal Systems: A Guide for Installers, Architects and Engineers. German Solar Energy Society (DGS). 2005. ISBN   978-1844071258.

Bibliography