Specific heat capacity

Last updated
Specific heat capacity
Other names
Specific heat
Common symbols
c
SI unit J⋅kg−1⋅K−1
In SI base units m2⋅K−1⋅s−2
Intensive?Yes
Dimension L2⋅T−2⋅K−1

In thermodynamics, the specific heat capacity (symbol c) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. [1] The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. [2] For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1. [3]

Contents

Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg−1⋅K−1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg−1⋅K−1. The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg−1⋅K−1, 790 J⋅kg−1⋅K−1, and 14300 J⋅kg−1⋅K−1, respectively. [4] While the substance is undergoing a phase transition, such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into changing its state rather than raising its temperature.

The specific heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (specific heat capacity at constant pressure) than when it is heated in a closed vessel that prevents expansion (specific heat capacity at constant volume). These two values are usually denoted by and , respectively; their quotient is the heat capacity ratio.

The term specific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C; [5] much in the fashion of specific gravity. Specific heat capacity is also related to other intensive measures of heat capacity with other denominators. If the amount of substance is measured as a number of moles, one gets the molar heat capacity instead, whose SI unit is joule per kelvin per mole, J⋅mol−1⋅K−1. If the amount is taken to be the volume of the sample (as is sometimes done in engineering), one gets the volumetric heat capacity, whose SI unit is joule per kelvin per cubic meter, J⋅m−3⋅K−1.

History

Discovery of specific heat

Joseph Black Black Joseph (cropped).jpg
Joseph Black

One of the first scientists to use the concept was Joseph Black, an 18th-century medical doctor and professor of medicine at Glasgow University. He measured the specific heat capacities of many substances, using the term capacity for heat. [6] In 1756 or soon thereafter, Black began an extensive study of heat. [7] In 1760 he realized that when two different substances of equal mass but different temperatures are mixed, the changes in number of degrees in the two substances differ, though the heat gained by the cooler substance and lost by the hotter is the same. Black related an experiment conducted by Daniel Gabriel Fahrenheit on behalf of Dutch physician Herman Boerhaave. For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 1 ° and the mercury temperature decreases by 49 ° (both arriving at 101 °F), even though the heat gained by the water and lost by the mercury is the same. This clarified the distinction between heat and temperature. It also introduced the concept of specific heat capacity, being different for different substances. Black wrote: “Quicksilver [mercury] ... has less capacity for the matter of heat than water.” [8] [9]

Definition

The specific heat capacity of a substance, usually denoted by or , is the heat capacity of a sample of the substance, divided by the mass of the sample: [10] where represents the amount of heat needed to uniformly raise the temperature of the sample by a small increment .

Like the heat capacity of an object, the specific heat capacity of a substance may vary, sometimes substantially, depending on the starting temperature of the sample and the pressure applied to it. Therefore, it should be considered a function of those two variables.

These parameters are usually specified when giving the specific heat capacity of a substance. For example, "Water (liquid): = 4187 J⋅kg−1⋅K−1 (15 °C)." [11] When not specified, published values of the specific heat capacity generally are valid for some standard conditions for temperature and pressure.

However, the dependency of on starting temperature and pressure can often be ignored in practical contexts, e.g. when working in narrow ranges of those variables. In those contexts one usually omits the qualifier and approximates the specific heat capacity by a constant suitable for those ranges.

Specific heat capacity is an intensive property of a substance, an intrinsic characteristic that does not depend on the size or shape of the amount in consideration. (The qualifier "specific" in front of an extensive property often indicates an intensive property derived from it. [12] )

Variations

The injection of heat energy into a substance, besides raising its temperature, usually causes an increase in its volume and/or its pressure, depending on how the sample is confined. The choice made about the latter affects the measured specific heat capacity, even for the same starting pressure and starting temperature . Two particular choices are widely used:

The value of is always less than the value of for all fluids. This difference is particularly notable in gases where values under constant pressure are typically 30% to 66.7% greater than those at constant volume. Hence the heat capacity ratio of gases is typically between 1.3 and 1.67. [13]

Applicability

The specific heat capacity can be defined and measured for gases, liquids, and solids of fairly general composition and molecular structure. These include gas mixtures, solutions and alloys, or heterogenous materials such as milk, sand, granite, and concrete, if considered at a sufficiently large scale.

The specific heat capacity can be defined also for materials that change state or composition as the temperature and pressure change, as long as the changes are reversible and gradual. Thus, for example, the concepts are definable for a gas or liquid that dissociates as the temperature increases, as long as the products of the dissociation promptly and completely recombine when it drops.

The specific heat capacity is not meaningful if the substance undergoes irreversible chemical changes, or if there is a phase change, such as melting or boiling, at a sharp temperature within the range of temperatures spanned by the measurement.

Measurement

The specific heat capacity of a substance is typically determined according to the definition; namely, by measuring the heat capacity of a sample of the substance, usually with a calorimeter, and dividing by the sample's mass. Several techniques can be applied for estimating the heat capacity of a substance, such as differential scanning calorimetry. [14] [15]

Graph of temperature of phases of water heated from -100 degC to 200 degC - the dashed line example shows that melting and heating 1 kg of ice at -50 degC to water at 40 degC needs 600 kJ Water temperature vs heat added.svg
Graph of temperature of phases of water heated from 100°C to 200°C the dashed line example shows that melting and heating 1kg of ice at 50°C to water at 40°C needs 600 kJ

The specific heat capacities of gases can be measured at constant volume, by enclosing the sample in a rigid container. On the other hand, measuring the specific heat capacity at constant volume can be prohibitively difficult for liquids and solids, since one often would need impractical pressures in order to prevent the expansion that would be caused by even small increases in temperature. Instead, the common practice is to measure the specific heat capacity at constant pressure (allowing the material to expand or contract as it wishes), determine separately the coefficient of thermal expansion and the compressibility of the material, and compute the specific heat capacity at constant volume from these data according to the laws of thermodynamics.[ citation needed ]

Units

International system

The SI unit for specific heat capacity is joule per kelvin per kilogram J/kg⋅K, J⋅K−1⋅kg−1. Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per kilogram: J/(kg⋅°C). Sometimes the gram is used instead of kilogram for the unit of mass: 1 J⋅g−1⋅K−1 = 1000 J⋅kg−1⋅K−1.

The specific heat capacity of a substance (per unit of mass) has dimension L2⋅Θ−1⋅T−2, or (L/T)2/Θ. Therefore, the SI unit J⋅kg−1⋅K−1 is equivalent to metre squared per second squared per kelvin (m2⋅K−1⋅s−2).

Imperial engineering units

Professionals in construction, civil engineering, chemical engineering, and other technical disciplines, especially in the United States, may use English Engineering units including the pound (lb = 0.45359237 kg) as the unit of mass, the degree Fahrenheit or Rankine (°R = 5/9 K, about 0.555556 K) as the unit of temperature increment, and the British thermal unit (BTU ≈ 1055.056 J), [16] [17] as the unit of heat.

In those contexts, the unit of specific heat capacity is BTU/lb⋅°R, or 1 BTU/lb⋅°R = 4186.68J/kg⋅K. [18] The BTU was originally defined so that the average specific heat capacity of water would be 1 BTU/lb⋅°F. [19] Note the value's similarity to that of the calorie - 4187 J/kg⋅°C ≈ 4184 J/kg⋅°C (~.07%) - as they are essentially measuring the same energy, using water as a basis reference, scaled to their systems' respective lbs and °F, or kg and °C.

Calories

In chemistry, heat amounts were often measured in calories. Confusingly, there are two common units with that name, respectively denoted cal and Cal:

While these units are still used in some contexts (such as kilogram calorie in nutrition), their use is now deprecated in technical and scientific fields. When heat is measured in these units, the unit of specific heat capacity is usually:

1 cal/°C⋅g = 1 Cal/°C⋅kg = 1 kcal/°C⋅kg = 4184 J/kg⋅K [20] = 4.184 kJ/kg⋅K.

Note that while cal is 11000 of a Cal or kcal, it is also per gram instead of kilogram: ergo, in either unit, the specific heat capacity of water is approximately 1.

Physical basis

The temperature of a sample of a substance reflects the average kinetic energy of its constituent particles (atoms or molecules) relative to its center of mass. However, not all energy provided to a sample of a substance will go into raising its temperature, exemplified via the equipartition theorem.

Monatomic gases

Statistical mechanics predicts that at room temperature and ordinary pressures, an isolated atom in a gas cannot store any significant amount of energy except in the form of kinetic energy, unless multiple electronic states are accessible at room temperature (such is the case for atomic fluorine). [21] Thus, the heat capacity per mole at room temperature is the same for all of the noble gases as well as for many other atomic vapors. More precisely, and , where is the ideal gas unit (which is the product of Boltzmann conversion constant from kelvin microscopic energy unit to the macroscopic energy unit joule, and the Avogadro number).

Therefore, the specific heat capacity (per gram, not per mole) of a monatomic gas will be inversely proportional to its (adimensional) atomic weight . That is, approximately,

For the noble gases, from helium to xenon, these computed values are

GasHeNeArKrXe
4.0020.1739.9583.80131.29
(J⋅K−1⋅kg−1)3118618.3312.2148.894.99
(J⋅K−1⋅kg−1)51971031520.3248.0158.3

Polyatomic gases

On the other hand, a polyatomic gas molecule (consisting of two or more atoms bound together) can store heat energy in additional degrees of freedom. Its kinetic energy contributes to the heat capacity in the same way as monatomic gases, but there are also contributions from the rotations of the molecule and vibration of the atoms relative to each other (including internal potential energy).

There may also be contributions to the heat capacity from excited electronic states for molecules where the energy gap between the ground state and the excited state is sufficiently small, such as NO. [22] For a few systems, quantum spin statistics can also be important contributions to the heat capacity, even at room temperature. The analysis of the heat capacity of H
2
due to ortho/para separation, [23] which arises from nuclear spin statistics, has been referred to as "one of the great triumphs of post-quantum mechanical statistical mechanics." [24]

These extra degrees of freedom or "modes" contribute to the specific heat capacity of the substance. Namely, when heat energy is injected into a gas with polyatomic molecules, only part of it will go into increasing their kinetic energy, and hence the temperature; the rest will go to into the other degrees of freedom. To achieve the same increase in temperature, more heat energy is needed for a gram of that substance than for a gram of a monatomic gas. Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number of degrees of freedom of the molecules. [25] [26] [27]

Quantum statistical mechanics predicts that each rotational or vibrational mode can only take or lose energy in certain discrete amounts (quanta), and that this affects the system’s thermodynamic properties. Depending on the temperature, the average heat energy per molecule may be too small compared to the quanta needed to activate some of those degrees of freedom. Those modes are said to be "frozen out". In that case, the specific heat capacity of the substance increases with temperature, sometimes in a step-like fashion as mode becomes unfrozen and starts absorbing part of the input heat energy.

For example, the molar heat capacity of nitrogen N
2
at constant volume is (at 15 °C, 1 atm), which is . [28] That is the value expected from the Equipartition Theorem if each molecule had 5 kinetic degrees of freedom. These turn out to be three degrees of the molecule's velocity vector, plus two degrees from its rotation about an axis through the center of mass and perpendicular to the line of the two atoms. Because of those two extra degrees of freedom, the specific heat capacity of N
2
(736 J⋅K−1⋅kg−1) is greater than that of an hypothetical monatomic gas with the same molecular mass 28 (445 J⋅K−1⋅kg−1), by a factor of 5/3. The vibrational and electronic degrees of freedom do not contribute significantly to the heat capacity in this case, due to the relatively large energy level gaps for both vibrational and electronic excitation in this molecule.

This value for the specific heat capacity of nitrogen is practically constant from below −150 °C to about 300 °C. In that temperature range, the two additional degrees of freedom that correspond to vibrations of the atoms, stretching and compressing the bond, are still "frozen out". At about that temperature, those modes begin to "un-freeze" as vibrationally excited states become accessible. As a result starts to increase rapidly at first, then slower as it tends to another constant value. It is 35.5 J⋅K−1⋅mol−1 at 1500 °C, 36.9 at 2500 °C, and 37.5 at 3500 °C. [29] The last value corresponds almost exactly to the value predicted by the Equipartition Theorem, since in the high-temperature limit the theorem predicts that the vibrational degree of freedom contributes twice as much to the heat capacity as any one of the translational or rotational degrees of freedom.

Derivations of heat capacity

Relation between specific heat capacities

Starting from the fundamental thermodynamic relation one can show,

where

A derivation is discussed in the article Relations between specific heats.

For an ideal gas, if is expressed as molar density in the above equation, this equation reduces simply to Mayer's relation,

where and are intensive property heat capacities expressed on a per mole basis at constant pressure and constant volume, respectively.

Specific heat capacity

The specific heat capacity of a material on a per mass basis is

which in the absence of phase transitions is equivalent to

where

For gases, and also for other materials under high pressures, there is need to distinguish between different boundary conditions for the processes under consideration (since values differ significantly between different conditions). Typical processes for which a heat capacity may be defined include isobaric (constant pressure, ) or isochoric (constant volume, ) processes. The corresponding specific heat capacities are expressed as

A related parameter to is , the volumetric heat capacity. In engineering practice, for solids or liquids often signifies a volumetric heat capacity, rather than a constant-volume one. In such cases, the mass-specific heat capacity is often explicitly written with the subscript , as . Of course, from the above relationships, for solids one writes

For pure homogeneous chemical compounds with established molecular or molar mass or a molar quantity is established, heat capacity as an intensive property can be expressed on a per mole basis instead of a per mass basis by the following equations analogous to the per mass equations:

where n = number of moles in the body or thermodynamic system. One may refer to such a per mole quantity as molar heat capacity to distinguish it from specific heat capacity on a per-mass basis.

Polytropic heat capacity

The polytropic heat capacity is calculated at processes if all the thermodynamic properties (pressure, volume, temperature) change

The most important polytropic processes run between the adiabatic and the isotherm functions, the polytropic index is between 1 and the adiabatic exponent (γ or κ)

Dimensionless heat capacity

The dimensionless heat capacity of a material is

where

Again, SI units shown for example.

Read more about the quantities of dimension one [30] at BIPM

In the Ideal gas article, dimensionless heat capacity is expressed as .

Heat capacity at absolute zero

From the definition of entropy

the absolute entropy can be calculated by integrating from zero kelvins temperature to the final temperature Tf

The heat capacity must be zero at zero temperature in order for the above integral not to yield an infinite absolute entropy, thus violating the third law of thermodynamics. One of the strengths of the Debye model is that (unlike the preceding Einstein model) it predicts the proper mathematical form of the approach of heat capacity toward zero, as absolute zero temperature is approached.

Solid phase

The theoretical maximum heat capacity for larger and larger multi-atomic gases at higher temperatures, also approaches the Dulong–Petit limit of 3R, so long as this is calculated per mole of atoms, not molecules. The reason is that gases with very large molecules, in theory have almost the same high-temperature heat capacity as solids, lacking only the (small) heat capacity contribution that comes from potential energy that cannot be stored between separate molecules in a gas.

The Dulong–Petit limit results from the equipartition theorem, and as such is only valid in the classical limit of a microstate continuum, which is a high temperature limit. For light and non-metallic elements, as well as most of the common molecular solids based on carbon compounds at standard ambient temperature, quantum effects may also play an important role, as they do in multi-atomic gases. These effects usually combine to give heat capacities lower than 3R per mole of atoms in the solid, although in molecular solids, heat capacities calculated per mole of molecules in molecular solids may be more than 3R. For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole of atoms. The lower than 3R number "per atom" (as is the case with diamond and beryllium) results from the “freezing out” of possible vibration modes for light atoms at suitably low temperatures, just as in many low-mass-atom gases at room temperatures. Because of high crystal binding energies, these effects are seen in solids more often than liquids: for example the heat capacity of liquid water is twice that of ice at near the same temperature, and is again close to the 3R per mole of atoms of the Dulong–Petit theoretical maximum.

For a more modern and precise analysis of the heat capacities of solids, especially at low temperatures, it is useful to use the idea of phonons. See Debye model.

Theoretical estimation

The path integral Monte Carlo method is a numerical approach for determining the values of heat capacity, based on quantum dynamical principles. However, good approximations can be made for gases in many states using simpler methods outlined below. For many solids composed of relatively heavy atoms (atomic number > iron), at non-cryogenic temperatures, the heat capacity at room temperature approaches 3R = 24.94 joules per kelvin per mole of atoms (Dulong–Petit law, R is the gas constant). Low temperature approximations for both gases and solids at temperatures less than their characteristic Einstein temperatures or Debye temperatures can be made by the methods of Einstein and Debye discussed below.

For liquids and gases, it is important to know the pressure to which given heat capacity data refer. Most published data are given for standard pressure. However, different standard conditions for temperature and pressure have been defined by different organizations. The International Union of Pure and Applied Chemistry (IUPAC) changed its recommendation from one atmosphere to the round value 100 kPa (≈750.062 Torr). [notes 1]

Relation between heat capacities

Measuring the specific heat capacity at constant volume can be prohibitively difficult for liquids and solids. That is, small temperature changes typically require large pressures to maintain a liquid or solid at constant volume, implying that the containing vessel must be nearly rigid or at least very strong (see coefficient of thermal expansion and compressibility). Instead, it is easier to measure the heat capacity at constant pressure (allowing the material to expand or contract freely) and solve for the heat capacity at constant volume using mathematical relationships derived from the basic thermodynamic laws.

The heat capacity ratio, or adiabatic index, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor.

Ideal gas

For an ideal gas, evaluating the partial derivatives above according to the equation of state, where R is the gas constant, for an ideal gas [31]

Substituting

this equation reduces simply to Mayer's relation:

The differences in heat capacities as defined by the above Mayer relation is only exact for an ideal gas and would be different for any real gas.

Specific heat capacity

The specific heat capacity of a material on a per mass basis is

which in the absence of phase transitions is equivalent to

where

For gases, and also for other materials under high pressures, there is need to distinguish between different boundary conditions for the processes under consideration (since values differ significantly between different conditions). Typical processes for which a heat capacity may be defined include isobaric (constant pressure, ) or isochoric (constant volume, ) processes. The corresponding specific heat capacities are expressed as

From the results of the previous section, dividing through by the mass gives the relation

A related parameter to is , the volumetric heat capacity. In engineering practice, for solids or liquids often signifies a volumetric heat capacity, rather than a constant-volume one. In such cases, the specific heat capacity is often explicitly written with the subscript , as . Of course, from the above relationships, for solids one writes

For pure homogeneous chemical compounds with established molecular or molar mass, or a molar quantity, heat capacity as an intensive property can be expressed on a per-mole basis instead of a per-mass basis by the following equations analogous to the per mass equations:

where n is the number of moles in the body or thermodynamic system. One may refer to such a per-mole quantity as molar heat capacity to distinguish it from specific heat capacity on a per-mass basis.

Polytropic heat capacity

The polytropic heat capacity is calculated at processes if all the thermodynamic properties (pressure, volume, temperature) change:

The most important polytropic processes run between the adiabatic and the isotherm functions, the polytropic index is between 1 and the adiabatic exponent (γ or κ).

Dimensionless heat capacity

The dimensionless heat capacity of a material is

where

In the ideal gas article, dimensionless heat capacity is expressed as and is related there directly to half the number of degrees of freedom per particle. This holds true for quadratic degrees of freedom, a consequence of the equipartition theorem.

More generally, the dimensionless heat capacity relates the logarithmic increase in temperature to the increase in the dimensionless entropy per particle , measured in nats.

Alternatively, using base-2 logarithms, relates the base-2 logarithmic increase in temperature to the increase in the dimensionless entropy measured in bits. [32]

Heat capacity at absolute zero

From the definition of entropy

the absolute entropy can be calculated by integrating from zero to the final temperature Tf:

Thermodynamic derivation

In theory, the specific heat capacity of a substance can also be derived from its abstract thermodynamic modeling by an equation of state and an internal energy function.

State of matter in a homogeneous sample

To apply the theory, one considers the sample of the substance (solid, liquid, or gas) for which the specific heat capacity can be defined; in particular, that it has homogeneous composition and fixed mass . Assume that the evolution of the system is always slow enough for the internal pressure and temperature be considered uniform throughout. The pressure would be equal to the pressure applied to it by the enclosure or some surrounding fluid, such as air.

The state of the material can then be specified by three parameters: its temperature , the pressure , and its specific volume , where is the volume of the sample. (This quantity is the reciprocal of the material's density .) Like and , the specific volume is an intensive property of the material and its state, that does not depend on the amount of substance in the sample.

Those variables are not independent. The allowed states are defined by an equation of state relating those three variables: The function depends on the material under consideration. The specific internal energy stored internally in the sample, per unit of mass, will then be another function of these state variables, that is also specific of the material. The total internal energy in the sample then will be .

For some simple materials, like an ideal gas, one can derive from basic theory the equation of state and even the specific internal energy In general, these functions must be determined experimentally for each substance.

Conservation of energy

The absolute value of this quantity is undefined, and (for the purposes of thermodynamics) the state of "zero internal energy" can be chosen arbitrarily. However, by the law of conservation of energy, any infinitesimal increase in the total internal energy must be matched by the net flow of heat energy into the sample, plus any net mechanical energy provided to it by enclosure or surrounding medium on it. The latter is , where is the change in the sample's volume in that infinitesimal step. [33] Therefore

hence

If the volume of the sample (hence the specific volume of the material) is kept constant during the injection of the heat amount , then the term is zero (no mechanical work is done). Then, dividing by ,

where is the change in temperature that resulted from the heat input. The left-hand side is the specific heat capacity at constant volume of the material.

For the heat capacity at constant pressure, it is useful to define the specific enthalpy of the system as the sum . An infinitesimal change in the specific enthalpy will then be

therefore

If the pressure is kept constant, the second term on the left-hand side is zero, and

The left-hand side is the specific heat capacity at constant pressure of the material.

Connection to equation of state

In general, the infinitesimal quantities are constrained by the equation of state and the specific internal energy function. Namely,

Here denotes the (partial) derivative of the state equation with respect to its argument, keeping the other two arguments fixed, evaluated at the state in question. The other partial derivatives are defined in the same way. These two equations on the four infinitesimal increments normally constrain them to a two-dimensional linear subspace space of possible infinitesimal state changes, that depends on the material and on the state. The constant-volume and constant-pressure changes are only two particular directions in this space.

This analysis also holds no matter how the energy increment is injected into the sample, namely by heat conduction, irradiation, electromagnetic induction, radioactive decay, etc.

Relation between heat capacities

For any specific volume , denote the function that describes how the pressure varies with the temperature , as allowed by the equation of state, when the specific volume of the material is forcefully kept constant at . Analogously, for any pressure , let be the function that describes how the specific volume varies with the temperature, when the pressure is kept constant at . Namely, those functions are such that

and

for any values of . In other words, the graphs of and are slices of the surface defined by the state equation, cut by planes of constant and constant , respectively.

Then, from the fundamental thermodynamic relation it follows that

This equation can be rewritten as

where

both depending on the state .

The heat capacity ratio, or adiabatic index, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor.

Calculation from first principles

The path integral Monte Carlo method is a numerical approach for determining the values of heat capacity, based on quantum dynamical principles. However, good approximations can be made for gases in many states using simpler methods outlined below. For many solids composed of relatively heavy atoms (atomic number > iron), at non-cryogenic temperatures, the heat capacity at room temperature approaches 3R = 24.94 joules per kelvin per mole of atoms (Dulong–Petit law, R is the gas constant). Low temperature approximations for both gases and solids at temperatures less than their characteristic Einstein temperatures or Debye temperatures can be made by the methods of Einstein and Debye discussed below. However, attention should be made for the consistency of such ab-initio considerations when used along with an equation of state for the considered material. [34]

Ideal gas

For an ideal gas, evaluating the partial derivatives above according to the equation of state, where R is the gas constant, for an ideal gas [35]

Substituting

this equation reduces simply to Mayer's relation:

The differences in heat capacities as defined by the above Mayer relation is only exact for an ideal gas and would be different for any real gas.

See also

Stylised atom with three Bohr model orbits and stylised nucleus.svg Physicsportal

Notes

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Standard Pressure ". doi : 10.1351/goldbook.S05921.

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

Enthalpy is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

<span class="mw-page-title-main">Stefan–Boltzmann law</span> Physical law on the emissive power of black body

The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

<span class="mw-page-title-main">Gas constant</span> Physical constant equivalent to the Boltzmann constant, but in different units

The molar gas constant is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. The effect is purely an effect due to deviation from ideality, as any ideal gas has no JT effect.

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.

<span class="mw-page-title-main">Heat capacity</span> Physical property describing the energy required to change a materials temperature

Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K).

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

<span class="mw-page-title-main">Internal energy</span> Energy contained within a system

The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics, in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Its author is Rudolf Clausius. Internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, potential energy changes equal the work done by/on the system.

<span class="mw-page-title-main">Isobaric process</span> Thermodynamic process in which pressure remains constant

In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics,

<span class="mw-page-title-main">Equipartition theorem</span> Theorem in classical statistical mechanics

In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion.

The Clausius–Clapeyron relation, in chemical thermodynamics, specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter of a single constituent. It is named after Rudolf Clausius and Benoît Paul Émile Clapeyron. However, this relation was in fact originally derived by Sadi Carnot in his Reflections on the Motive Power of Fire, which was published in 1824 but largely ignored until it was rediscovered by Clausius, Clapeyron, and Lord Kelvin decades later. Kelvin said of Carnot's argument that "nothing in the whole range of Natural Philosophy is more remarkable than the establishment of general laws by such a process of reasoning."

<span class="mw-page-title-main">Heat capacity ratio</span> Thermodynamic quantity

In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor and is denoted by γ (gamma) for an ideal gas or κ (kappa), the isentropic exponent for a real gas. The symbol γ is used by aerospace and chemical engineers. where C is the heat capacity, the molar heat capacity, and c the specific heat capacity of a gas. The suffixes P and V refer to constant-pressure and constant-volume conditions respectively.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

In thermodynamics, the specific volume of a substance is the quotient of the substance's volume to its mass :

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

<span class="mw-page-title-main">Volume (thermodynamics)</span> Extensive parameter used to describe a thermodynamic systems state

In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical region covered by a system may or may not coincide with a control volume used to analyze the system.

References

  1. Halliday, David; Resnick, Robert; Walker, Jearl (2001). Fundamentals of Physics (6th ed.). New York, NY US: John Wiley & Sons.
  2. Open University (2008). S104 Book 3 Energy and Light, p. 59. The Open University. ISBN   9781848731646.
  3. Open University (2008). S104 Book 3 Energy and Light, p. 179. The Open University. ISBN   9781848731646.
  4. Engineering ToolBox (2003). "Specific Heat of some common Substances".
  5. (2001): Columbia Encyclopedia, 6th ed.; as quoted by Encyclopedia.com. Columbia University Press. Accessed on 2019-04-11.
  6. Laidler, Keith J. (1993). The World of Physical Chemistry. Oxford University Press. ISBN   0-19-855919-4.
  7. Ramsay, William (1918). The life and letters of Joseph Black, M.D. Constable. pp. 38–39.
  8. Black, Joseph (1807). Robison, John (ed.). Lectures on the Elements of Chemistry: Delivered in the University of Edinburgh. Vol. 1. Mathew Carey. pp. 76–77.
  9. West, John B. (2014-06-15). "Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases". American Journal of Physiology-Lung Cellular and Molecular Physiology. 306 (12): L1057 –L1063. doi:10.1152/ajplung.00020.2014. ISSN   1040-0605.
  10. International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN   92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
  11. "Water – Thermal Properties". Engineeringtoolbox.com. Retrieved 2021-03-29.
  12. International Union of Pure and Applied Chemistry, Physical Chemistry Division. "Quantities, Units and Symbols in Physical Chemistry" (PDF). Blackwell Sciences. p. 7. The adjective specific before the name of an extensive quantity is often used to mean divided by mass.
  13. Lange's Handbook of Chemistry, 10th ed., page 1524.
  14. Quick, C. R.; Schawe, J. E. K.; Uggowitzer, P. J.; Pogatscher, S. (2019-07-01). "Measurement of specific heat capacity via fast scanning calorimetry—Accuracy and loss corrections". Thermochimica Acta. Special Issue on occasion of the 65th birthday of Christoph Schick. 677: 12–20. Bibcode:2019TcAc..677...12Q. doi: 10.1016/j.tca.2019.03.021 . ISSN   0040-6031.
  15. Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F. (September 2016). "Solid–solid phase transitions via melting in metals". Nature Communications. 7 (1): 11113. Bibcode:2016NatCo...711113P. doi:10.1038/ncomms11113. ISSN   2041-1723. PMC   4844691 . PMID   27103085.
  16. Koch, Werner (2013). VDI Steam Tables (4 ed.). Springer. p. 8. ISBN   9783642529412. Published under the auspices of the Verein Deutscher Ingenieure (VDI).
  17. Cardarelli, Francois (2012). Scientific Unit Conversion: A Practical Guide to Metrication. M.J. Shields (translation) (2 ed.). Springer. p. 19. ISBN   9781447108054.
  18. From direct values: 1BTU/lb⋅°R × 1055.06J/BTU × (1/0.45359237)lb/kg x 9/5°R/K = 4186.82J/kg⋅K
  19. °F=°R
  20. °C=K
  21. McQuarrie, Donald A. (1973). Statistical Thermodynamics. New York, NY: University Science Books. pp. 83–85.
  22. "6.6: Electronic Partition Function". Chemistry LibreTexts. 2020-11-26. Retrieved 2024-12-16.
  23. Bonhoeffer, K.F.; Harteck, P. (1926). "Über Para- und Orthowasserstoff". Z. Phys. Chem. 4B: 113.
  24. McQuarrie, Donald A. (1973). Statistical Thermodynamics. New York, NY: University Science Books. p. 107.
  25. Feynman, R., The Feynman Lectures on Physics , Vol. 1, ch. 40, pp. 7–8
  26. Reif, F. (1965). Fundamentals of statistical and thermal physics . McGraw-Hill. pp.  253–254.
  27. Kittel, Charles; Kroemer, Herbert (2000). Thermal physics. W. H. Freeman. p. 78. ISBN   978-0-7167-1088-2.
  28. Thornton, Steven T. and Rex, Andrew (1993) Modern Physics for Scientists and Engineers, Saunders College Publishing
  29. Chase, M.W. Jr. (1998) NIST-JANAF Themochemical Tables, Fourth Edition , In Journal of Physical and Chemical Reference Data, Monograph 9, pages 1–1951.
  30. "About the unit one".
  31. Yunus A. Cengel and Michael A. Boles, Thermodynamics: An Engineering Approach, 7th Edition, McGraw-Hill, 2010, ISBN   007-352932-X.
  32. Fraundorf, P. (2003). "Heat capacity in bits". American Journal of Physics. 71 (11): 1142. arXiv: cond-mat/9711074 . Bibcode:2003AmJPh..71.1142F. doi:10.1119/1.1593658. S2CID   18742525.
  33. Feynman, Richard, The Feynman Lectures on Physics , Vol. 1, Ch. 45
  34. S. Benjelloun, "Thermodynamic identities and thermodynamic consistency of Equation of States", Link to Archiv e-print Link to Hal e-print
  35. Cengel, Yunus A. and Boles, Michael A. (2010) Thermodynamics: An Engineering Approach, 7th Edition, McGraw-Hill ISBN   007-352932-X.

Further reading