Endoreversible thermodynamics

Last updated

Endoreversible thermodynamics is a subset of irreversible thermodynamics aimed at making more realistic assumptions about heat transfer than are typically made in reversible thermodynamics. It gives an upper bound on the power that can be derived from a real process that is lower than that predicted by Carnot for a Carnot cycle, and accommodates the exergy destruction occurring as heat is transferred irreversibly.

Contents

It is also called finite-time thermodynamics, entropy generation minimization, or thermodynamic optimization. [1]

History

Endoreversible thermodynamics was discovered multiple times, with Reitlinger (1929), [2] Novikov (1957) [3] [4] and Chambadal (1957), [5] although it is most often attributed to Curzon & Ahlborn (1975). [6]

Reitlinger derived it by considering a heat exchanger receiving heat from a finite hot stream fed by a combustion process.

A brief review of the history of rediscoveries is in. [7]

Efficiency at maximal power

Novikov engine showing irreversible heat transfer between
T
H
{\displaystyle T_{H}}
and
T
i
H
{\displaystyle T_{iH}}
, coupled to a Carnot cycle operating between
T
i
H
{\displaystyle T_{iH}}
and
T
C
{\displaystyle T_{C}}
. NovikovEngine.png
Novikov engine showing irreversible heat transfer between and , coupled to a Carnot cycle operating between and .

Consider a semi-ideal heat engine, in which heat transfer takes time, according to Fourier's law of heat conduction: , but other operations happen instantly.

Its maximal efficiency is the standard Carnot result, but it requires heat transfer to be reversible (quasistatic), thus taking infinite time. At maximum power output, its efficiency is the Chambadal–Novikov efficiency:

Due to occasional confusion about the origins of the above equation, it is sometimes named the Chambadal–Novikov–Curzon–Ahlborn efficiency.

The plot of Chambadal-Novikov efficiency as a function of Carnot efficiency. We see that it is always less than Carnot efficiency, but approaches it at the two ends. Chambadal-Novikov efficiency.svg
The plot of Chambadal–Novikov efficiency as a function of Carnot efficiency. We see that it is always less than Carnot efficiency, but approaches it at the two ends.

Derivation

This derivation is a slight simplification of Curzon & Ahlborn. [6]

Consider a heat engine, with a single working fluid cycling around the engine. On one side, the working fluid has temperature , and is in direct contact with the hot heat bath. On the other side, it has temperature , and is in direct contact with the cold heat bath.

The heat flow into the engine is , where is the heat conduction coefficient. The heat flow out of the engine is . The power output of the engine is .

Side note: if one cycle of the engine takes time , and during this time, it is in contact with the hot side only for a time , then we can reduce to this case by replacing with . Similar comments apply to the cold side.

By Carnot theorem, we have . This then gives us a problem of constraint optimization:

This can be solved by typical methods, such as Lagrange multipliers, giving us

at which point the engine is operating at efficiency . In particular, if , then we have

This is often the case with practical heat engines in power generation plants, where the work fluid can only spend a small amount of time with the hot bath (nuclear reactor core, coal furnance, etc), but a much larger amount of time with the cold bath (open atmosphere, a large body of water, etc).

Experimental data

For some typical cycles, the above equation (note that absolute temperatures must be used) gives the following results: [6] [9]

Power Plant (°C) (°C) (Carnot) (Endoreversible) (Observed)
West Thurrock (UK) coal-fired power plant 255650.640.400.36
CANDU (Canada) nuclear power plant 253000.480.280.30
Larderello (Italy) geothermal power plant 802500.330.1780.16

As shown, the endoreversible efficiency much more closely models the observed data.

However, such an engine violates Carnot's principle which states that work can be done any time there is a difference in temperature. The fact that the hot and cold reservoirs are not at the same temperature as the working fluid they are in contact with means that work can and is done at the hot and cold reservoirs. The result is tantamount to coupling the high and low temperature parts of the cycle, so that the cycle collapses. [10]

In the Carnot cycle, the working fluid must always remain constant temperatures, as the heat reservoirs they are in contact with and that they are separated by adiabatic transformations which prevent thermal contact. The efficiency was first derived by William Thomson [11] in his study of an unevenly heated body in which the adiabatic partitions between bodies at different temperatures are removed and maximum work is performed. It is well known that the final temperature is the geometric mean temperature so that the efficiency is the Carnot efficiency for an engine working between and .

See also

An introduction to endoreversible thermodynamics is given in the thesis by Katharina Wagner. [8] It is also introduced by Hoffman et al. [12] [13]

A thorough discussion of the concept, together with many applications in engineering, is given in the book by Hans Ulrich Fuchs. [14]

Related Research Articles

<span class="mw-page-title-main">Carnot heat engine</span> Theoretical engine

A Carnot heat engine is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the fundamental thermodynamic concept of entropy. The Carnot engine is the most efficient heat engine which is theoretically possible. The efficiency depends only upon the absolute temperatures of the hot and cold heat reservoirs between which it operates.

<span class="mw-page-title-main">Entropy</span> Property of a thermodynamic system

Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication.

<span class="mw-page-title-main">Heat engine</span> System that converts heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat to usable energy, particularly mechanical energy, which can then be used to do mechanical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, particularly electrical, since at least the late 19th century. The heat engine does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the higher temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a lower temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of friction and drag.

<span class="mw-page-title-main">Second law of thermodynamics</span> Physical law for entropy and heat

The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter. Another statement is: "Not all heat can be converted into work in a cyclic process."

<span class="mw-page-title-main">Otto cycle</span> Thermodynamic cycle for spark ignition piston engines

An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.

<span class="mw-page-title-main">Carnot's theorem (thermodynamics)</span> Maximum attainable efficiency of any heat engine

In thermodynamics, Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also called Carnot's rule, is a principle that specifies limits on the maximum efficiency that any heat engine can obtain.

<span class="mw-page-title-main">Rankine cycle</span> Model that is used to predict the performance of steam turbine systems

The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.

A binary cycle is a method for generating electrical power from geothermal resources and employs two separate fluid cycles, hence binary cycle. The primary cycle extracts the geothermal energy from the reservoir, and secondary cycle converts the heat into work to drive the generator and generate electricity.

<span class="mw-page-title-main">Thermodynamic cycle</span> Linked cyclic series of thermodynamic processes

A thermodynamic cycle consists of linked sequences of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat pump. If at every point in the cycle the system is in thermodynamic equilibrium, the cycle is reversible. Whether carried out reversible or irreversibly, the net entropy change of the system is zero, as entropy is a state function.

<span class="mw-page-title-main">Thermal efficiency</span> Performance measure of a device that uses thermal energy

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.

<span class="mw-page-title-main">Clausius theorem</span> Version of the second law of thermodynamics

The Clausius theorem (1855), also known as the Clausius inequality, states that for a thermodynamic system exchanging heat with external thermal reservoirs and undergoing a thermodynamic cycle, the following inequality holds.

In aerospace engineering, concerning aircraft, rocket and spacecraft design, overall propulsion system efficiency is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle, to accelerate it, or to replace losses due to aerodynamic drag or gravity. Mathematically, it is represented as , where is the cycle efficiency and is the propulsive efficiency.

<span class="mw-page-title-main">Lenoir cycle</span>

The Lenoir cycle is an idealized thermodynamic cycle often used to model a pulse jet engine. It is based on the operation of an engine patented by Jean Joseph Etienne Lenoir in 1860. This engine is often thought of as the first commercially produced internal combustion engine. The absence of any compression process in the design leads to lower thermal efficiency than the more well known Otto cycle and Diesel cycle.

<span class="mw-page-title-main">Carnot cycle</span> Idealized thermodynamic cycle

A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through the application of work to the system.

<span class="mw-page-title-main">Heat pump and refrigeration cycle</span> Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are similar. Heat is moved from a cold place to a warm place.

A photo-Carnot engine is a Carnot cycle engine in which the working medium is a photon inside a cavity with perfectly reflecting walls. Radiation is the working fluid, and the piston is driven by radiation pressure.

Cybernetical physics is a scientific area on the border of cybernetics and physics which studies physical systems with cybernetical methods. Cybernetical methods are understood as methods developed within control theory, information theory, systems theory and related areas: control design, estimation, identification, optimization, pattern recognition, signal processing, image processing, etc. Physical systems are also understood in a broad sense; they may be either lifeless, living nature or of artificial (engineering) origin, and must have reasonably understood dynamics and models suitable for posing cybernetical problems. Research objectives in cybernetical physics are frequently formulated as analyses of a class of possible system state changes under external (controlling) actions of a certain class. An auxiliary goal is designing the controlling actions required to achieve a prespecified property change. Among typical control action classes are functions which are constant in time, functions which depend only on time, and functions whose value depends on measurement made at the same time or on previous instances. The last class is of special interest since these functions correspond to system analysis by means of external feedback.

Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit.

<span class="mw-page-title-main">Entropy production</span> Development of entropy in a thermodynamic system

Entropy production is the amount of entropy which is produced during heat process to evaluate the efficiency of the process.

A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics. The first realization of a quantum heat engine was pointed out by Scovil and Schulz-DuBois in 1959, showing the connection of efficiency of the Carnot engine and the 3-level maser. Quantum refrigerators share the structure of quantum heat engines with the purpose of pumping heat from a cold to a hot bath consuming power first suggested by Geusic, Schulz-DuBois, De Grasse and Scovil. When the power is supplied by a laser the process is termed optical pumping or laser cooling, suggested by Wineland and Hänsch. Surprisingly heat engines and refrigerators can operate up to the scale of a single particle thus justifying the need for a quantum theory termed quantum thermodynamics.

References

  1. Bejan, Adrian (1996-02-01). "Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes". Journal of Applied Physics. 79 (3): 1191–1218. doi: 10.1063/1.362674 . ISSN   0021-8979.
  2. H.B. Reitlinger, Sur l'Utilisation de la Chaleur dans les Machines à Feu (Vaillant-Carmane, Liège, 1929), p. 25
  3. Novikov, I. I. "Efficiency of atomic energy installation." Atomnaya Energiya 3.11 (1957): 409-412.
  4. Novikov, I.I. (1958). "The efficiency of atomic power stations (a review)". Journal of Nuclear Energy. 7 (1–2): 125–128. doi:10.1016/0891-3919(58)90244-4.
  5. Chambadal P (1957) Les centrales nucléaires. Armand Colin, Paris, France, 4 1-58
  6. 1 2 3 Curzon, F.L.; Ahlborn, B. (1975). "Efficiency of a Carnot engine at maximum power output". American Journal of Physics. 43: 22–24. Bibcode:1975AmJPh..43...22C. doi:10.1119/1.10023.
  7. Vaudrey, Alexandre; Lanzetta, François; Feidt, Michel (2014-12-01). "H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines". Journal of Non-Equilibrium Thermodynamics. 39 (4): 199–203. arXiv: 1406.5853 . doi:10.1515/jnet-2014-0018. ISSN   1437-4358.
  8. 1 2 M.Sc. Katharina Wagner (2008), A graphic based interface to Endoreversible Thermodynamics, TU Chemnitz, Fakultät für Naturwissenschaften, Masterarbeit (in English). http://archiv.tu-chemnitz.de/pub/2008/0123/index.html
  9. Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed. ed.). John Wiley & Sons, Inc.. ISBN   0-471-86256-8.
  10. Lavenda, B. H. (2007-02-01). "The thermodynamics of endoreversible engines". American Journal of Physics. 75 (2): 169–175. arXiv: cond-mat/0604094 . doi:10.1119/1.2397094. ISSN   0002-9505.
  11. W. Thomson, Phil. Mag. (Feb. 1853)
  12. K. H. Hoffmann. An introduction to endoreversible thermodynamics. Atti dell Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali, pages 1–19, 2007.
  13. Hoffmann, K. H.; Burzler, J. M.; Schubert, S. (1997). "Endoreversible Thermodynamics". J. Non-Equilib. Thermodyn. 22 (4): 311–355.
  14. H. U. Fuchs, The Dynamics of Heat (2nd ed.), chapter 9. Graduate Texts in Physics, Springer 2011, ISBN   978-1-4419-7603-1