Conjugate variables (thermodynamics)

Last updated

In thermodynamics, the internal energy of a system is expressed in terms of pairs of conjugate variables such as temperature and entropy, pressure and volume, or chemical potential and particle number. In fact, all thermodynamic potentials are expressed in terms of conjugate pairs. The product of two quantities that are conjugate has units of energy or sometimes power.

Contents

For a mechanical system, a small increment of energy is the product of a force times a small displacement. A similar situation exists in thermodynamics. An increment in the energy of a thermodynamic system can be expressed as the sum of the products of certain generalized "forces" that, when unbalanced, cause certain generalized "displacements", and the product of the two is the energy transferred as a result. These forces and their associated displacements are called conjugate variables. The thermodynamic force is always an intensive variable and the displacement is always an extensive variable, yielding an extensive energy transfer. The intensive (force) variable is the derivative of the internal energy with respect to the extensive (displacement) variable, while all other extensive variables are held constant.

The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables.

In the above description, the product of two conjugate variables yields an energy. In other words, the conjugate pairs are conjugate with respect to energy. In general, conjugate pairs can be defined with respect to any thermodynamic state function. Conjugate pairs with respect to entropy are often used, in which the product of the conjugate pairs yields an entropy. Such conjugate pairs are particularly useful in the analysis of irreversible processes, as exemplified in the derivation of the Onsager reciprocal relations.

Overview

Just as a small increment of energy in a mechanical system is the product of a force times a small displacement, so an increment in the energy of a thermodynamic system can be expressed as the sum of the products of certain generalized "forces" which, when unbalanced, cause certain generalized "displacements" to occur, with their product being the energy transferred as a result. These forces and their associated displacements are called conjugate variables. [1] For example, consider the conjugate pair. The pressure acts as a generalized force: Pressure differences force a change in volume , and their product is the energy lost by the system due to work. Here, pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. In a similar way, temperature differences drive changes in entropy, and their product is the energy transferred by heat transfer. The thermodynamic force is always an intensive variable and the displacement is always an extensive variable, yielding an extensive energy. The intensive (force) variable is the derivative of the (extensive) internal energy with respect to the extensive (displacement) variable, with all other extensive variables held constant.

The theory of thermodynamic potentials is not complete until one considers the number of particles in a system as a variable on par with the other extensive quantities such as volume and entropy. The number of particles is, like volume and entropy, the displacement variable in a conjugate pair. The generalized force component of this pair is the chemical potential. The chemical potential may be thought of as a force which, when imbalanced, pushes an exchange of particles, either with the surroundings, or between phases inside the system. In cases where there are a mixture of chemicals and phases, this is a useful concept. For example, if a container holds liquid water and water vapor, there will be a chemical potential (which is negative) for the liquid which pushes the water molecules into the vapor (evaporation) and a chemical potential for the vapor, pushing vapor molecules into the liquid (condensation). Only when these "forces" equilibrate, and the chemical potential of each phase is equal, is equilibrium obtained.

The most commonly considered conjugate thermodynamic variables are (with corresponding SI units):

Thermal parameters:
Mechanical parameters:
  • Pressure:   (Pa= J m−3)
  • Volume:   (m3 = J Pa−1)
or, more generally,
  • Stress: (Pa= J m−3)
  • Volume × Strain: (m3 = J Pa−1)
Material parameters:

For a system with different types of particles, a small change in the internal energy is given by:

where is internal energy, is temperature, is entropy, is pressure, is volume, is the chemical potential of the -th particle type, and is the number of -type particles in the system.

Here, the temperature, pressure, and chemical potential are the generalized forces, which drive the generalized changes in entropy, volume, and particle number respectively. These parameters all affect the internal energy of a thermodynamic system. A small change in the internal energy of the system is given by the sum of the flow of energy across the boundaries of the system due to the corresponding conjugate pair. These concepts will be expanded upon in the following sections.

While dealing with processes in which systems exchange matter or energy, classical thermodynamics is not concerned with the rate at which such processes take place, termed kinetics. For this reason, the term thermodynamics is usually used synonymously with equilibrium thermodynamics. A central notion for this connection is that of quasistatic processes, namely idealized, "infinitely slow" processes. Time-dependent thermodynamic processes far away from equilibrium are studied by non-equilibrium thermodynamics. This can be done through linear or non-linear analysis of irreversible processes, allowing systems near and far away from equilibrium to be studied, respectively.

Pressure/volume and stress/strain pairs

As an example, consider the conjugate pair. The pressure acts as a generalized force – pressure differences force a change in volume, and their product is the energy lost by the system due to mechanical work. Pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables.

The above holds true only for non-viscous fluids. In the case of viscous fluids, plastic and elastic solids, the pressure force is generalized to the stress tensor, and changes in volume are generalized to the volume multiplied by the strain tensor. [2] These then form a conjugate pair. If is the ij component of the stress tensor, and is the ij component of the strain tensor, then the mechanical work done as the result of a stress-induced infinitesimal strain is:

or, using Einstein notation for the tensors, in which repeated indices are assumed to be summed:

In the case of pure compression (i.e. no shearing forces), the stress tensor is simply the negative of the pressure times the unit tensor so that

The trace of the strain tensor () is the fractional change in volume so that the above reduces to as it should.

Temperature/entropy pair

In a similar way, temperature differences drive changes in entropy, and their product is the energy transferred by heating. Temperature is the driving force, entropy is the associated displacement, and the two form a pair of conjugate variables. The temperature/entropy pair of conjugate variables is the only heat term; the other terms are essentially all various forms of work.

Chemical potential/particle number pair

The chemical potential is like a force which pushes an increase in particle number. In cases where there are a mixture of chemicals and phases, this is a useful concept. For example, if a container holds water and water vapor, there will be a chemical potential (which is negative) for the liquid, pushing water molecules into the vapor (evaporation) and a chemical potential for the vapor, pushing vapor molecules into the liquid (condensation). Only when these "forces" equilibrate is equilibrium obtained.

See also

Related Research Articles

Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes.

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

Enthalpy is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Thermodynamic free energy</span> State function whose change relates to the systems maximal work output

In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system. The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.

<span class="mw-page-title-main">First law of thermodynamics</span> Law of thermodynamics establishing the conservation of energy

The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy of a system, an extensive property for taking account of the balance of heat and work in the system. Energy cannot be created or destroyed, but it can be transformed from one form to another. In an isolated system the sum of all forms of energy is constant.

In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system.

<span class="mw-page-title-main">Lennard-Jones potential</span> Model of intermolecular interactions

In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential is an intermolecular pair potential. Out of all the intermolecular potentials, the Lennard-Jones potential is probably the one that has been the most extensively studied. It is considered an archetype model for simple yet realistic intermolecular interactions. The Lennard-Jones potential is often used as a building block in molecular models for more complex substances. Many studies of the idealized "Lennard-Jones substance" use the potential to understand the physical nature of matter.

<span class="mw-page-title-main">Gibbs free energy</span> Type of thermodynamic potential

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as where:

<span class="mw-page-title-main">Thermodynamic potential</span> Scalar physical quantities representing system states

A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. While thermodynamic potentials cannot be measured directly, they can be predicted using computational chemistry.

<span class="mw-page-title-main">Helmholtz free energy</span> Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

<span class="mw-page-title-main">Internal energy</span> Energy contained within a system

The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics, in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Its author is Rudolf Clausius. Internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, potential energy changes equal the work done by/on the system.

<span class="mw-page-title-main">Thermodynamic system</span> Body of matter in a state of internal equilibrium

A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Laws of thermodynamics</span> Observational basis of thermodynamics

The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general and are applicable in other natural sciences.

<span class="mw-page-title-main">Thermodynamic equations</span> Equations in thermodynamics

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

<span class="mw-page-title-main">Thermodynamic process</span> Passage of a system from an initial to a final state of thermodynamic equilibrium

Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes.

<span class="mw-page-title-main">Work (thermodynamics)</span> Type of energy transfer

Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. Also, the surroundings can perform thermodynamic work on a thermodynamic system, which is measured by an opposite sign convention.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which are specified externally, such as a constant magnetic field.

<span class="mw-page-title-main">Fundamental thermodynamic relation</span> Equations on thermodynamic quantities

In thermodynamics, the fundamental thermodynamic relation are four fundamental equations which demonstrate how four important thermodynamic quantities depend on variables that can be controlled and measured experimentally. Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G or H (enthalpy). The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way.

References

  1. Alberty, R. A. (2001). "Use of Legendre transforms in chemical thermodynamics" (PDF). Pure Appl. Chem. 73 (8): 1349–1380. doi:10.1351/pac200173081349. S2CID   98264934. p. 1353.
  2. Landau, L. D.; Lifshitz, E. M. (1986). Theory of Elasticity (Course of Theoretical Physics Volume 7). Translated by J.B. Sykes; W.H. Reid. With A. M. Kosevich and L. P. Pitaevskii (3rd ed.). Waltham MA, Oxford: Butterworth-Heinemann. ISBN   9780750626330.

Further reading