Thermodynamic square

Last updated
The thermodynamic square with potentials highlighted in red.
Key:
G = Gibbs free energy
p = Pressure
H = Enthalpy
S = Entropy
U = Internal energy
V = Volume
F = Helmholtz free energy
T = Temperature Thermodynamic square.svg
The thermodynamic square with potentials highlighted in red.
Key:
G = Gibbs free energy
p = Pressure
H = Enthalpy
S = Entropy
U = Internal energy
V = Volume
F = Helmholtz free energy
T = Temperature

The thermodynamic square (also known as the thermodynamic wheel, Guggenheim scheme or Born square) is a mnemonic diagram attributed to Max Born and used to help determine thermodynamic relations. Born presented the thermodynamic square in a 1929 lecture. [1] The symmetry of thermodynamics appears in a paper by F.O. Koenig. [2] The corners represent common conjugate variables while the sides represent thermodynamic potentials. The placement and relation among the variables serves as a key to recall the relations they constitute.

Contents

A mnemonic used by students to remember the Maxwell relations (in thermodynamics) is "Good Physicists Have Studied Under Very Fine Teachers", which helps them remember the order of the variables in the square, in clockwise direction. Another mnemonic used here is "Valid Facts and Theoretical Understanding Generate Solutions to Hard Problems", which gives the letter in the normal left-to-right writing direction. Both times A has to be identified with F, another common symbol for Helmholtz free energy. To prevent the need for this switch the following mnemonic is also widely used:"Good Physicists Have Studied Under Very Ambitious Teachers"; another one is Good Physicists Have SUVAT, in reference to the equations of motion. One other useful variation of the mnemonic when the symbol E is used for internal energy instead of U is the following: "Some Hard Problems Go To Finish Very Easy". [3]

Use

Derivatives of thermodynamic potentials

The thermodynamic square is mostly used to compute the derivative of any thermodynamic potential of interest. Suppose for example one desires to compute the derivative of the internal energy . The following procedure should be considered:

  1. Place oneself in the thermodynamic potential of interest, namely (, , , ). In our example, that would be .
  2. The two opposite corners of the potential of interest represent the coefficients of the overall result. If the coefficient lies on the left hand side of the square, a negative sign should be added. In our example, an intermediate result would be .
  3. In the opposite corner of each coefficient, you will find the associated differential. In our example, the opposite corner to would be (volume) and the opposite corner for would be (entropy). In our example, an interim result would be: . Notice that the sign convention will affect only the coefficients, not the differentials.
  4. Finally, always add , where denotes the chemical potential. Therefore, we would have: .

The Gibbs–Duhem equation can be derived by using this technique. Notice though that the final addition of the differential of the chemical potential has to be generalized.

Maxwell relations

The thermodynamic square can also be used to find the first-order derivatives in the common Maxwell relations. The following procedure should be considered:

  1. Looking at the four corners of the square and make a shape with the quantities of interest.
  2. Read the shape in two different ways by seeing it as L and ⅃. The L will give one side of the relation and the ⅃ will give the other. Note that the partial derivative is taken along the vertical stem of L (and ⅃) while the last corner is held constant.
  3. Use L to find .
  4. Similarly, use ⅃ to find . Again, notice that the sign convention affects only the variable held constant in the partial derivative, not the differentials.
  5. Finally, use above equations to get the Maxwell relation: .

By rotating the shape (randomly, for example by 90 degrees counterclockwise into a shape) other relations such as: can be found.

Natural variables of thermodynamic potentials

Finally, the potential at the center of each side is a natural function of the variables at the corner of that side. So, is a natural function of and , and is a natural function of and .

Further reading

Related Research Articles

Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. The effect is purely an effect due to deviation from ideality, as any ideal gas has no JT effect.

In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system.

<span class="mw-page-title-main">Thermodynamic potential</span> Scalar physical quantities representing system states

A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. While thermodynamic potentials cannot be measured directly, they can be predicted using computational chemistry.

<span class="mw-page-title-main">Internal energy</span> Energy contained within a system

The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics, in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Its author is Rudolf Clausius. Internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, potential energy changes equal the work done by/on the system.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient is equal to one for each component.

<span class="mw-page-title-main">Maxwell relations</span> Equations involving the partial derivatives of thermodynamic quantities

Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell.

In thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of chemical equilibrium. It is equal to the pressure of an ideal gas which has the same temperature and molar Gibbs free energy as the real gas.

<span class="mw-page-title-main">Thermodynamic equations</span> Equations in thermodynamics

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

<span class="mw-page-title-main">Bridgman's thermodynamic equations</span>

In thermodynamics, Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating multiple thermodynamic identities involving a number of thermodynamic quantities. The equations are named after the American physicist Percy Williams Bridgman..

<span class="mw-page-title-main">Material properties (thermodynamics)</span>

The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are:

The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which are specified externally, such as a constant magnetic field.

<span class="mw-page-title-main">Fundamental thermodynamic relation</span> Equations on thermodynamic quantities

In thermodynamics, the fundamental thermodynamic relation are four fundamental equations which demonstrate how four important thermodynamic quantities depend on variables that can be controlled and measured experimentally. Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G or H (enthalpy). The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way.

<span class="mw-page-title-main">Gibbs–Duhem equation</span> Equation in thermodynamics

In thermodynamics, the Gibbs–Duhem equation describes the relationship between changes in chemical potential for components in a thermodynamic system:

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

<span class="mw-page-title-main">Internal pressure</span>

Internal pressure is a measure of how the internal energy of a system changes when it expands or contracts at constant temperature. It has the same dimensions as pressure, the SI unit of which is the pascal.

References

  1. Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics 2nd Ed. Wiley & Sons. p. 183. ISBN   978-81-265-0812-9.
  2. Koenig, F.O. (1935). "Families of Thermodynamic Equations. I The Method of Transformations by the Characteristic Group". J. Chem. Phys. 3 (1): 29–35. Bibcode:1935JChPh...3...29K. doi:10.1063/1.1749549.
  3. Zhao. "A Mnemonic scheme for thermodynamics" (PDF).