Debye model

Last updated
Peter Debye Debye100.jpg
Peter Debye

In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat (heat capacity) in a solid. [1] It treats the vibrations of the atomic lattice (heat) as phonons in a box in contrast to the Einstein photoelectron model, which treats the solid as many individual, non-interacting quantum harmonic oscillators. The Debye model correctly predicts the low-temperature dependence of the heat capacity of solids, which is proportional to [ clarification needed ] – the Debye T 3 law. Similarly to the Einstein photoelectron model, it recovers the Dulong–Petit law at high temperatures. Due to simplifying assumptions, its accuracy suffers at intermediate temperatures[ clarification needed ].

Contents

Derivation

The Debye model is a solid-state equivalent of Planck's law of black body radiation, which treats electromagnetic radiation as a photon gas confined in a vacuum space. Correspondingly, the Debye model treats atomic vibrations as phonons confined in the solid's volume. Most of the calculation steps are identical, as both are examples of a massless Bose gas with a linear dispersion relation.

For a cube of side-length , the resonating modes of the sonic disturbances (considering for now only those aligned with one axis), treated as particles in a box, have wavelengths given as

where is an integer. The energy of a phonon is given as

where is the Planck constant and is the frequency of the phonon. Making the approximation that the frequency is inversely proportional to the wavelength,

in which is the speed of sound inside the solid. In three dimensions, energy can be generalized to

in which is the magnitude of the three-dimensional momentum of the phonon, and , , and are the components of the resonating mode along each of the three axes.

The approximation that the frequency is inversely proportional to the wavelength (giving a constant speed of sound) is good for low-energy phonons but not for high-energy phonons, which is a limitation of the Debye model. This approximation leads to incorrect results at intermediate temperatures, whereas the results are exact at the low and high temperature limits.

The total energy in the box is

where is the number of phonons in the box with energy ; the total energy is equal to the sum of energies over all energy level, and the energy at a given level is found by multiplying by the energy level by the number of phonons with that energy. In three dimensions, each combination of modes in each of the three axes corresponds to an energy level, giving the total energy as:

The Debye model and Planck's law of black body radiation differ here with respect to this sum. Unlike electromagnetic photon radiation in a box, there are a finite number of phonon energy states because a phonon cannot have an arbitrarily high frequency. Its frequency is bounded by its propagation medium—the atomic lattice of the solid. The following illustration describes transverse phonons in a cubic solid at varying frequencies:

Debye limit.svg

It is reasonable to assume that the minimum wavelength of a phonon is twice the atomic separation, as shown in the lowest example. With atoms in a cubic solid, each axis of the cube measures as being atoms long. Atomic separation is then given by , and the minimum wavelength is

making the maximum mode number :

This contrasts with photons, for which the maximum mode number is infinite. This number bounds the upper limit of the triple energy sum

If is a function that is slowly varying with respect to , the sums can be approximated with integrals:

To evaluate this integral, the function , the number of phonons with energy must also be known. Phonons obey Bose–Einstein statistics, and their distribution is given by the Bose–Einstein statistics formula:

Because a phonon has three possible polarization states (one longitudinal, and two transverse, which approximately do not affect its energy) the formula above must be multiplied by 3,

Considering all three polarization states together also means that an effective sonic velocity must be determined and used as the value of the standard sonic velocity The Debye temperature defined below is proportional to ; more precisely, , where longitudinal and transversal sound-wave velocities are averaged, weighted by the number of polarization states. The Debye temperature or the effective sonic velocity is a measure of the hardness of the crystal.

Substituting into the energy integral yields

These integrals are evaluated for photons easily because their frequency, at least semi-classically, is unbound. The same is not true for phonons, so in order to approximate this triple integral, Peter Debye used spherical coordinates,

and approximated the cube with an eighth of a sphere,

where is the radius of this sphere. As the energy function does not depend on either of the angles, the equation can be simplified to

The number of particles in the original cube and in the eighth of a sphere should be equivalent. The volume of the cube is unit cell volumes,

such that the radius must be

The substitution of integration over a sphere for the correct integral over a cube introduces another source of inaccuracy into the resulting model.

After making the spherical substitution and substituting in the function , the energy integral becomes

.

Changing the integration variable to ,

To simplify the appearance of this expression, define the Debye temperature

where is the volume of the cubic box of side-length .

Some authors [2] [3] describe the Debye temperature as shorthand for some constants and material-dependent variables. However, is roughly equal to the phonon energy of the minimum wavelength mode, and so we can interpret the Debye temperature as the temperature at which the highest-frequency mode is excited. Additionally, since all other modes are of a lower energy than the highest-frequency mode, all modes are excited at this temperature.[ original research? ]

From the total energy, the specific internal energy can be calculated:

where is the third Debye function. Differentiating this function with respect to produces the dimensionless heat capacity:

These formulae treat the Debye model at all temperatures. The more elementary formulae given further down give the asymptotic behavior in the limit of low and high temperatures. The essential reason for the exactness at low and high energies is, respectively, that the Debye model gives the exact dispersion relation at low frequencies, and corresponds to the exact density of states at high temperatures, concerning the number of vibrations per frequency interval.[ original research? ]

Debye's derivation

Debye derived his equation differently and more simply. Using continuum mechanics, he found that the number of vibrational states with a frequency less than a particular value was asymptotic to

in which is the volume and is a factor that he calculated from elasticity coefficients and density. Combining this formula with the expected energy of a harmonic oscillator at temperature (already used by Einstein in his model) would give an energy of

if the vibrational frequencies continued to infinity. This form gives the behaviour which is correct at low temperatures. But Debye realized that there could not be more than vibrational states for N atoms. He made the assumption that in an atomic solid, the spectrum of frequencies of the vibrational states would continue to follow the above rule, up to a maximum frequency chosen so that the total number of states is

Debye knew that this assumption was not really correct (the higher frequencies are more closely spaced than assumed), but it guarantees the proper behaviour at high temperature (the Dulong–Petit law). The energy is then given by

Substituting for ,

where is the function later given the name of third-order Debye function.

Another derivation

First the vibrational frequency distribution is derived from Appendix VI of Terrell L. Hill's An Introduction to Statistical Mechanics. [4] Consider a three-dimensional isotropic elastic solid with N atoms in the shape of a rectangular parallelepiped with side-lengths . The elastic wave will obey the wave equation and will be plane waves; consider the wave vector and define , such that

 

 

 

 

(1)

Solutions to the wave equation are

and with the boundary conditions at ,

 

 

 

 

(2)

where are positive integers. Substituting ( 2 ) into ( 1 ) and also using the dispersion relation ,

The above equation, for fixed frequency , describes an eighth of an ellipse in "mode space" (an eighth because are positive). The number of modes with frequency less than is thus the number of integral points inside the ellipse, which, in the limit of (i.e. for a very large parallelepiped) can be approximated to the volume of the ellipse. Hence, the number of modes with frequency in the range is

 

 

 

 

(3)

where is the volume of the parallelepiped. The wave speed in the longitudinal direction is different from the transverse direction and that the waves can be polarised one way in the longitudinal direction and two ways in the transverse direction and ca be defined as .

Following the derivation from A First Course in Thermodynamics, [5] an upper limit to the frequency of vibration is defined ; since there are atoms in the solid, there are quantum harmonic oscillators (3 for each x-, y-, z- direction) oscillating over the range of frequencies . can be determined using

.

 

 

 

 

(4)

By defining , where k is the Boltzmann constant and h is the Planck constant, and substituting ( 4 ) into ( 3 ),

 

 

 

 

(5)

this definition is more standard; the energy contribution for all oscillators oscillating at frequency can be found. Quantum harmonic oscillators can have energies where and using Maxwell-Boltzmann statistics, the number of particles with energy is

The energy contribution for oscillators with frequency is then

.

 

 

 

 

(6)

By noting that (because there are modes oscillating with frequency ),

From above, we can get an expression for 1/A; substituting it into ( 6 ),

Integrating with respect to ν yields

Temperature limits

The temperature of a Debye solid is said to be low if , leading to

This definite integral can be evaluated exactly:

In the low-temperature limit, the limitations of the Debye model mentioned above do not apply, and it gives a correct relationship between (phononic) heat capacity, temperature, the elastic coefficients, and the volume per atom (the latter quantities being contained in the Debye temperature).

The temperature of a Debye solid is said to be high if . Using if leads to

which upon integration gives

This is the Dulong–Petit law, and is fairly accurate although it does not take into account anharmonicity, which causes the heat capacity to rise further. The total heat capacity of the solid, if it is a conductor or semiconductor, may also contain a non-negligible contribution from the electrons.

Debye versus Einstein

Debye vs. Einstein. Predicted heat capacity as a function of temperature. DebyeVSEinstein.jpg
Debye vs. Einstein. Predicted heat capacity as a function of temperature.

The Debye and Einstein models correspond closely to experimental data, but the Debye model is correct at low temperatures whereas the Einstein model is not. To visualize the difference between the models, one would naturally plot the two on the same set of axes, but this is not immediately possible as both the Einstein model and the Debye model provide a functional form for the heat capacity. As models, they require scales to relate them to their real-world counterparts. One can see that the scale of the Einstein model is given by :

The scale of the Debye model is , the Debye temperature. Both are usually found by fitting the models to the experimental data. (The Debye temperature can theoretically be calculated from the speed of sound and crystal dimensions.) Because the two methods approach the problem from different directions and different geometries, Einstein and Debye scales are not the same, that is to say

which means that plotting them on the same set of axes makes no sense. They are two models of the same thing, but of different scales. If one defines the Einstein condensation temperature as

then one can say

and, to relate the two, the ratio is used.

The Einstein solid is composed of single-frequency quantum harmonic oscillators, . That frequency, if it indeed existed, would be related to the speed of sound in the solid. If one imagines the propagation of sound as a sequence of atoms hitting one another, then the frequency of oscillation must correspond to the minimum wavelength sustainable by the atomic lattice, , where

,

which makes the Einstein temperature and the sought ratio is therefore

Using the ratio, both models can be plotted on the same graph. It is the cube root of the ratio of the volume of one octant of a three-dimensional sphere to the volume of the cube that contains it, which is just the correction factor used by Debye when approximating the energy integral above. Alternatively, the ratio of the two temperatures can be seen to be the ratio of Einstein's single frequency at which all oscillators oscillate and Debye's maximum frequency. Einstein's single frequency can then be seen to be a mean of the frequencies available to the Debye model.

Debye temperature table

Even though the Debye model is not completely correct, it gives a good approximation for the low temperature heat capacity of insulating, crystalline solids where other contributions (such as highly mobile conduction electrons) are negligible. For metals, the electron contribution to the heat is proportional to , which at low temperatures dominates the Debye result for lattice vibrations. In this case, the Debye model can only be said to approximate the lattice contribution to the specific heat. The following table lists Debye temperatures for several pure elements [2] and sapphire:

Aluminium 428 K
Beryllium 1440 K
Cadmium 209 K
Caesium 38 K
Carbon (diamond)2230 K
Chromium 630 K
Copper 343 K
Germanium 374 K
Gold 170 K
Iron 470 K
Lead 105 K
Manganese 410 K
Nickel 450 K
Platinum 240 K
Rubidium 56 K
Sapphire 1047 K
Selenium 90 K
Silicon 645 K
Silver 215 K
Tantalum 240 K
Tin (white)200 K
Titanium 420 K
Tungsten 400 K
Zinc 327 K

The Debye model's fit to experimental data is often phenomenologically improved by allowing the Debye temperature to become temperature dependent; [6] for example, the value for ice increases from about 222 K [7] to 300 K [8] as the temperature goes from absolute zero to about 100 K.

Extension to other quasi-particles

For other bosonic quasi-particles, e.g., magnons (quantized spin waves) in ferromagnets instead of the phonons (quantized sound waves), one can derive analogous results. In this case at low frequencies one has different dispersion relations of momentum and energy, e.g., in the case of magnons, instead of for phonons (with ). One also has different density of states (e.g., ). As a consequence, in ferromagnets one gets a magnon contribution to the heat capacity, , which dominates at sufficiently low temperatures the phonon contribution, . In metals, in contrast, the main low-temperature contribution to the heat capacity, , comes from the electrons. It is fermionic, and is calculated by different methods going back to Sommerfeld's free electron model.[ citation needed ]

Extension to liquids

It was long thought that phonon theory is not able to explain the heat capacity of liquids, since liquids only sustain longitudinal, but not transverse phonons, which in solids are responsible for 2/3 of the heat capacity. However, Brillouin scattering experiments with neutrons and with X-rays, confirming an intuition of Yakov Frenkel, [9] have shown that transverse phonons do exist in liquids, albeit restricted to frequencies above a threshold called the Frenkel frequency. Since most energy is contained in these high-frequency modes, a simple modification of the Debye model is sufficient to yield a good approximation to experimental heat capacities of simple liquids. [10] More recently, it has been shown that instantaneous normal modes associated with relaxations from saddle points in the liquid energy landscape, which dominate the frequency spectrum of liquids at low frequencies, may determine the specific heat of liquids as a function of temperature over a broad range. [11]

Debye frequency

The Debye frequency (Symbol: or ) is a parameter in the Debye model that refers to a cut-off angular frequency for waves of a harmonic chain of masses, used to describe the movement of ions in a crystal lattice and more specifically, to correctly predict that the heat capacity in such crystals is constant at high temperatures (Dulong–Petit law). The concept was first introduced by Peter Debye in 1912. [12]

Throughout this section, periodic boundary conditions are assumed.

Definition

Assuming the dispersion relation is

with the speed of sound in the crystal and k the wave vector, the value of the Debye frequency is as follows:

For a one-dimensional monatomic chain, the Debye frequency is equal to [13]

with as the distance between two neighbouring atoms in the chain when the system is in its ground state of energy, here being that none of the atoms are moving with respect to one another; the total number of atoms in the chain; the size of the system, which is the length of the chain; and the linear number density. For , , and , the relation holds.

For a two-dimensional monatomic square lattice, the Debye frequency is equal to

with is the size (area) of the surface, and the surface number density.

For a three-dimensional monatomic primitive cubic crystal, the Debye frequency is equal to [14]

with the size of the system, and the volume number density.

The general formula for the Debye frequency as a function of , the number of dimensions for a (hyper)cubic lattice is

with being the gamma function.

The speed of sound in the crystal depends on the mass of the atoms, the strength of their interaction, the pressure on the system, and the polarisation of the spin wave (longitudinal or transverse), among others. For the following, the speed of sound is assumed to be the same for any polarisation, although this limits the applicability of the result. [15]

The assumed dispersion relation is easily proven inaccurate for a one-dimensional chain of masses, but in Debye's model, this does not prove to be problematic.[ citation needed ]

Relation to Debye's temperature

The Debye temperature , another parameter in Debye model, is related to the Debye frequency by the relation

where is the reduced Planck constant and is the Boltzmann constant.

Debye's derivation

Three-dimensional crystal

In Debye's derivation of the heat capacity, he sums over all possible modes of the system, accounting for different directions and polarisations. He assumed the total number of modes per polarization to be , the amount of masses in the system, and the total to be [15]

with three polarizations per mode. The sum runs over all modes without differentiating between different polarizations, and then counts the total number of polarization-mode combinations. Debye made this assumption based on an assumption from classical mechanics that the number of modes per polarization in a chain of masses should always be equal to the number of masses in the chain.

The left hand side can be made explicit to show how it depends on the Debye frequency, introduced first as a cut-off frequency beyond which no frequencies exist. By relating the cut-off frequency to the maximum number of modes, an expression for the cut-off frequency can be derived.

First of all, by assuming to be very large ( ≫ 1, with the size of the system in any of the three directions) the smallest wave vector in any direction could be approximated by: , with . Smaller wave vectors cannot exist because of the periodic boundary conditions. Thus the summation would become [16]

where ; is the size of the system; and the integral is (as the summation) over all possible modes, which is assumed to be a finite region (bounded by the cut-off frequency).

The triple integral could be rewritten as a single integral over all possible values of the absolute value of (see Jacobian for spherical coordinates). The result is

with the absolute value of the wave vector corresponding with the Debye frequency, so .

Since the dispersion relation is , it can be written as an integral over all possible :

After solving the integral it is again equated to to find

It can be rearranged into

One-dimensional chain in 3D space

The same derivation could be done for a one-dimensional chain of atoms. The number of modes remains unchanged, because there are still three polarizations, so

The rest of the derivation is analogous to the previous, so the left hand side is rewritten with respect to the Debye frequency:

The last step is multiplied by two is because the integrand in the first integral is even and the bounds of integration are symmetric about the origin, so the integral can be rewritten as from 0 to after scaling by a factor of 2. This is also equivalent to the statement that the volume of a one-dimensional ball is twice its radius. Applying a change a substitution of , our bounds are now 0 to , which gives us our rightmost integral. We continue;

Conclusion:

Two-dimensional crystal

The same derivation could be done for a two-dimensional crystal. The number of modes remains unchanged, because there are still three polarizations. The derivation is analogous to the previous two. We start with the same equation,

And then the left hand side is rewritten and equated to

where is the size of the system.

It can be rewritten as

Polarization dependence

In reality, longitudinal waves often have a different wave velocity from that of transverse waves. Making the assumption that the velocities are equal simplified the final result, but reintroducing the distinction improves the accuracy of the final result.

The dispersion relation becomes , with , each corresponding to one of the three polarizations. The cut-off frequency , however, does not depend on . We can write the total number of modes as , which is again equal to . Here the summation over the modes is now dependent on .

One-dimensional chain in 3D space

The summation over the modes is rewritten

The result is

Thus the Debye frequency is found

The calculated effective velocity is the harmonic mean of the velocities for each polarization. By assuming the two transverse polarizations to have the same phase speed and frequency,

Setting recovers the expression previously derived under the assumption that velocity is the same for all polarization modes.

Two-dimensional crystal

The same derivation can be done for a two-dimensional crystal to find

The calculated effective velocity is the square root of the harmonic mean of the squares of velocities. By assuming the two transverse polarizations to be the same,

Setting recovers the expression previously derived under the assumption that velocity is the same for all polarization modes.

Three-dimensional crystal

The same derivation can be done for a three-dimensional crystal to find (the derivation is analogous to previous derivations)

The calculated effective velocity is the cube root of the harmonic mean of the cubes of velocities. By assuming the two transverse polarizations to be the same,

Setting recovers the expression previously derived under the assumption that velocity is the same for all polarization modes.

Derivation with the actual dispersion relation

Because only the discretized points matter, two different waves could render the same physical manifestation (see Phonon). Phonon k 3k.gif
Because only the discretized points matter, two different waves could render the same physical manifestation (see Phonon).

This problem could be made more applicable by relaxing the assumption of linearity of the dispersion relation. Instead of using the dispersion relation , a more accurate dispersion relation can be used. In classical mechanics, it is known that for an equidistant chain of masses which interact harmonically with each other, the dispersion relation is [15]

with being the mass of each atom, the spring constant for the harmonic oscillator, and still being the spacing between atoms in the ground state. After plotting this relation, Debye's estimation of the cut-off wavelength based on the linear assumption remains accurate, because for every wavenumber bigger than (that is, for is smaller than ), a wavenumber that is smaller than could be found with the same angular frequency. This means the resulting physical manifestation for the mode with the larger wavenumber is indistinguishable from the one with the smaller wavenumber. Therefore, the study of the dispersion relation can be limited to the first Brillouin zone without any loss of accuracy or information. [17] This is possible because the system consists of discretized points, as is demonstrated in the animated picture. Dividing the dispersion relation by and inserting for , we find the speed of a wave with to be

By simply inserting in the original dispersion relation we find

Combining these results the same result is once again found

However, for any chain with greater complexity, including diatomic chains, the associated cut-off frequency and wavelength are not very accurate, since the cut-off wavelength is twice as big and the dispersion relation consists of additional branches, two total for a diatomic chain. It is also not certain from this result whether for higher-dimensional systems the cut-off frequency was accurately predicted by Debye when taking into account the more accurate dispersion relation.

Alternative derivation

The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses. CPT-sound-nyquist-thereom-1.5percycle.svg
The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses.

For a one-dimensional chain, the formula for the Debye frequency can also be reproduced using a theorem for describing aliasing. The Nyquist–Shannon sampling theorem is used for this derivation, the main difference being that in the case of a one-dimensional chain, the discretization is not in time, but in space.

The cut-off frequency can be determined from the cut-off wavelength. From the sampling theorem, we know that for wavelengths smaller than , or twice the sampling distance, every mode is a repeat of a mode with wavelength larger than , so the cut-off wavelength should be at . This results again in , rendering

It does not matter which dispersion relation is used, as the same cut-off frequency would be calculated.

See also

Related Research Articles

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

In mathematics, the family of Debye functions is defined by

<span class="mw-page-title-main">Normal mode</span> Pattern of oscillating motion in a system

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Lamb shift</span> Difference in energy of hydrogenic atom electron states not predicted by the Dirac equation

In physics the Lamb shift, named after Willis Lamb, refers to an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift refers to a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.

In quantum mechanics, the results of the quantum particle in a box can be used to look at the equilibrium situation for a quantum ideal gas in a box which is a box containing a large number of molecules which do not interact with each other except for instantaneous thermalizing collisions. This simple model can be used to describe the classical ideal gas as well as the various quantum ideal gases such as the ideal massive Fermi gas, the ideal massive Bose gas as well as black body radiation which may be treated as a massless Bose gas, in which thermalization is usually assumed to be facilitated by the interaction of the photons with an equilibrated mass.

<span class="mw-page-title-main">Einstein coefficients</span> Quantities describing probability of absorption or emission of light

Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

Grüneisen parameterγ is a dimensionless thermodynamic parameter named after German physicist Eduard Grüneisen, whose original definition was formulated in terms of the phonon nonlinearities.

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

Zero sound is the name given by Lev Landau in 1957 to the unique quantum vibrations in quantum Fermi liquids. The zero sound can no longer be thought of as a simple wave of compression and rarefaction, but rather a fluctuation in space and time of the quasiparticles' momentum distribution function. As the shape of Fermi distribution function changes slightly, zero sound propagates in the direction for the head of Fermi surface with no change of the density of the liquid. Predictions and subsequent experimental observations of zero sound was one of the key confirmation on the correctness of Landau's Fermi liquid theory.

The Mathieu equation is a linear second-order differential equation with periodic coefficients. The French mathematician, E. Léonard Mathieu, first introduced this family of differential equations, nowadays termed Mathieu equations, in his “Memoir on vibrations of an elliptic membrane” in 1868. "Mathieu functions are applicable to a wide variety of physical phenomena, e.g., diffraction, amplitude distortion, inverted pendulum, stability of a floating body, radio frequency quadrupole, and vibration in a medium with modulated density"

As the devices continue to shrink further into the sub-100 nm range following the trend predicted by Moore’s law, the topic of thermal properties and transport in such nanoscale devices becomes increasingly important. Display of great potential by nanostructures for thermoelectric applications also motivates the studies of thermal transport in such devices. These fields, however, generate two contradictory demands: high thermal conductivity to deal with heating issues in sub-100 nm devices and low thermal conductivity for thermoelectric applications. These issues can be addressed with phonon engineering, once nanoscale thermal behaviors have been studied and understood.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

References

  1. Debye, Peter (1912). "Zur Theorie der spezifischen Waerme". Annalen der Physik (in German). 39 (4): 789–839. Bibcode:1912AnP...344..789D. doi:10.1002/andp.19123441404.
  2. 1 2 Kittel, Charles (2004). Introduction to Solid State Physics (8 ed.). John Wiley & Sons. ISBN   978-0471415268.
  3. Schroeder, Daniel V. "An Introduction to Thermal Physics" Addison-Wesley, San Francisco (2000). Section 7.5
  4. Hill, Terrell L. (1960). An Introduction to Statistical Mechanics . Reading, Massachusetts, U.S.A.: Addison-Wesley Publishing Company, Inc. ISBN   9780486652429.
  5. Oberai, M. M.; Srikantiah, G (1974). A First Course in Thermodynamics. New Delhi, India: Prentice-Hall of India Private Limited. ISBN   9780876920183.
  6. Patterson, James D; Bailey, Bernard C. (2007). Solid-State Physics: Introduction to the Theory. Springer. pp. 96–97. ISBN   978-3-540-34933-4.
  7. Shulman, L. M. (2004). "The heat capacity of water ice in interstellar or interplanetary conditions". Astronomy and Astrophysics. 416: 187–190. Bibcode:2004A&A...416..187S. doi: 10.1051/0004-6361:20031746 .
  8. Flubacher, P.; Leadbetter, A. J.; Morrison, J. A. (1960). "Heat Capacity of Ice at Low Temperatures". The Journal of Chemical Physics. 33 (6): 1751. Bibcode:1960JChPh..33.1751F. doi:10.1063/1.1731497.
  9. In his textbook Kinetic Theory of Liquids (engl. 1947)
  10. Bolmatov, D.; Brazhkin, V. V.; Trachenko, K. (2012). "The phonon theory of liquid thermodynamics". Scientific Reports. 2: 421. arXiv: 1202.0459 . Bibcode:2012NatSR...2E.421B. doi:10.1038/srep00421. PMC   3359528 . PMID   22639729.
  11. Baggioli, M.; Zaccone, A. (2021). "Explaining the specific heat of liquids based on instantaneous normal modes". Physical Review E. 104: 014103. arXiv: 2101.07585 . doi:10.1103/PhysRevE.104.014103.
  12. Debye, P. (1912). "Zur Theorie der spezifischen Wärmen". Annalen der Physik. 344 (14): 789–839. Bibcode:1912AnP...344..789D. doi:10.1002/andp.19123441404. ISSN   1521-3889.
  13. "The one dimensional monatomic solid" (PDF). Retrieved 2018-04-27.
  14. Fitzpatrick, Richard (2006). "Specific heats of solids". Richard Fitzpatrick University of Texas at Austin . Retrieved 2018-04-27.
  15. 1 2 3 Simon, Steven H. (2013-06-20). The Oxford Solid State Basics (First ed.). Oxford: Oxford University Press. ISBN   9780199680764. OCLC   859577633.
  16. "The Oxford Solid State Basics". podcasts.ox.ac.uk. Retrieved 2024-01-12.
  17. Srivastava, G. P. (2019-07-16). The Physics of Phonons. Routledge. ISBN   978-1-351-40955-1.

Further reading