Statistical mechanics |
---|
The Einstein solid is a model of a crystalline solid that contains a large number of independent three-dimensional quantum harmonic oscillators of the same frequency. The independence assumption is relaxed in the Debye model.
While the model provides qualitative agreement with experimental data, especially for the high-temperature limit, these oscillations are in fact phonons, or collective modes involving many atoms. Albert Einstein was aware that getting the frequency of the actual oscillations would be difficult, but he nevertheless proposed this theory because it was a particularly clear demonstration that quantum mechanics could solve the specific heat problem in classical mechanics. [1]
The original theory proposed by Einstein in 1907 has great historical relevance. The heat capacity of solids as predicted by the empirical Dulong–Petit law was required by classical mechanics, the specific heat of solids should be independent of temperature. But experiments at low temperatures showed that the heat capacity changes, going to zero at absolute zero. As the temperature goes up, the specific heat goes up until it approaches the Dulong and Petit prediction at high temperature.
By employing Planck's quantization assumption, Einstein's theory accounted for the observed experimental trend for the first time. Together with the photoelectric effect, this became one of the most important pieces of evidence for the need of quantization. Einstein used the levels of the quantum mechanical oscillator many years before the advent of modern quantum mechanics.
For a thermodynamic approach, the heat capacity can be derived using different statistical ensembles. All solutions are equivalent at the thermodynamic limit.
The heat capacity of an object at constant volume V is defined through the internal energy U as
, the temperature of the system, can be found from the entropy
To find the entropy consider a solid made of atoms, each of which has 3 degrees of freedom. So there are quantum harmonic oscillators (hereafter SHOs for "Simple Harmonic Oscillators").
Possible energies of an SHO are given by
where the n of SHO is usually interpreted as the excitation state of the oscillating mass but here n is usually interpreted as the number of phonons (bosons) occupying that vibrational mode (frequency). The net effect is that the energy levels are evenly spaced, and one can define a quantum of energy due to a phonon as
which is the smallest and only amount by which the energy of an SHO is increased. Next, we must compute the multiplicity of the system. That is, compute the number of ways to distribute quanta of energy among SHOs. This task becomes simpler if one thinks of distributing pebbles over boxes
or separating stacks of pebbles with partitions
or arranging pebbles and partitions
The last picture is the most telling. The number of arrangements of objects is . So the number of possible arrangements of pebbles and partitions is . However, if partition #3 and partition #5 trade places, no one would notice. The same argument goes for quanta. To obtain the number of possible distinguishable arrangements one has to divide the total number of arrangements by the number of indistinguishable arrangements. There are identical quanta arrangements, and identical partition arrangements. Therefore, multiplicity of the system is given by
which, as mentioned before, is the number of ways to deposit quanta of energy into oscillators. Entropy of the system has the form
is a huge number—subtracting one from it has no overall effect whatsoever:
With the help of Stirling's approximation, entropy can be simplified:
Total energy of the solid is given by
since there are q energy quanta in total in the system in addition to the ground state energy of each oscillator. Some authors, such as Schroeder, omit this ground state energy in their definition of the total energy of an Einstein solid.
We are now ready to compute the temperature
Elimination of q between the two preceding formulas gives for U:
The first term is associated with zero point energy and does not contribute to specific heat. It will therefore be lost in the next step.
Differentiating with respect to temperature to find we obtain:
or
Although the Einstein model of the solid predicts the heat capacity accurately at high temperatures, and in this limit
, which is equivalent to Dulong–Petit law, the heat capacity noticeably deviates from experimental values at low temperatures. See Debye model for how to calculate accurate low-temperature heat capacities.
Heat capacity is obtained through the use of the canonical partition function of a simple quantum harmonic oscillator.
where
substituting this into the partition function formula yields
This is the partition function of one harmonic oscillator. Because, statistically, heat capacity, energy, and entropy of the solid are equally distributed among its atoms, we can work with this partition function to obtain those quantities and then simply multiply them by to get the total. Next, let's compute the average energy of each oscillator
where
Therefore,
Heat capacity of one oscillator is then
Up to now, we calculated the heat capacity of a unique degree of freedom, which has been modeled as a quantum harmonic. The heat capacity of the entire solid is then given by , where the total number of degree of freedom of the solid is three (for the three directional degree of freedom) times , the number of atoms in the solid. One thus obtains
which is algebraically identical to the formula derived in the previous section.
The quantity has the dimensions of temperature and is a characteristic property of a crystal. It is known as the Einstein temperature. [2] Hence, the Einstein crystal model predicts that the energy and heat capacities of a crystal are universal functions of the dimensionless ratio . Similarly, the Debye model predicts a universal function of the ratio , where is the Debye temperature.
In Einstein's model, the specific heat approaches zero exponentially fast at low temperatures. This is because all the oscillations have one common frequency. The correct behavior is found by quantizing the normal modes of the solid in the same way that Einstein suggested. Then the frequencies of the waves are not all the same, and the specific heat goes to zero as a power law, which matches experiment. This modification is called the Debye model, which appeared in 1912.
The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.
Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.
In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various energy states in thermal equilibrium. It is applicable when the temperature is high enough or the particle density is low enough to render quantum effects negligible.
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
In quantum statistics, Bose–Einstein statistics describes one of two possible ways in which a collection of non-interacting identical particles may occupy a set of available discrete energy states at thermodynamic equilibrium. The aggregation of particles in the same state, which is a characteristic of particles obeying Bose–Einstein statistics, accounts for the cohesive streaming of laser light and the frictionless creeping of superfluid helium. The theory of this behaviour was developed (1924–25) by Satyendra Nath Bose, who recognized that a collection of identical and indistinguishable particles can be distributed in this way. The idea was later adopted and extended by Albert Einstein in collaboration with Bose.
In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.
In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.
Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales. This phenomenon was first discovered at the University of Alberta. This should be distinguished from temperatures expressed as negative numbers on non-thermodynamic Celsius or Fahrenheit scales, which are nevertheless higher than absolute zero. A system with a truly negative temperature on the Kelvin scale is hotter than any system with a positive temperature. If a negative-temperature system and a positive-temperature system come in contact, heat will flow from the negative- to the positive-temperature system. A standard example of such a system is population inversion in laser physics.
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion.
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.
The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.
The Poisson–Boltzmann equation describes the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution.
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution. The Debye–Hückel equation provides a starting point for modern treatments of non-ideality of electrolyte solutions.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is constant for temperatures far from the absolute zero.
Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.
In solid state physics the electronic specific heat, sometimes called the electron heat capacity, is the specific heat of an electron gas. Heat is transported by phonons and by free electrons in solids. For pure metals, however, the electronic contributions dominate in the thermal conductivity. In impure metals, the electron mean free path is reduced by collisions with impurities, and the phonon contribution may be comparable with the electronic contribution.