Anharmonicity

Last updated
Potential energy of a diatomic molecule as a function of atomic spacing. When the molecules are too close or too far away, they experience a restoring force back towards u0. (Imagine a marble rolling back and forth in the depression.) The blue curve is close in shape to the molecule's actual potential well, while the red parabola is a good approximation for small oscillations. The red approximation treats the molecule as a harmonic oscillator, because the restoring force, -V'(u), is linear with respect to the displacement u. Potential approximation.png
Potential energy of a diatomic molecule as a function of atomic spacing. When the molecules are too close or too far away, they experience a restoring force back towards u0. (Imagine a marble rolling back and forth in the depression.) The blue curve is close in shape to the molecule's actual potential well, while the red parabola is a good approximation for small oscillations. The red approximation treats the molecule as a harmonic oscillator, because the restoring force, -V'(u), is linear with respect to the displacement u.

In classical mechanics, anharmonicity is the deviation of a system from being a harmonic oscillator. An oscillator that is not oscillating in harmonic motion is known as an anharmonic oscillator where the system can be approximated to a harmonic oscillator and the anharmonicity can be calculated using perturbation theory. If the anharmonicity is large, then other numerical techniques have to be used. In reality all oscillating systems are anharmonic, but most approximate the harmonic oscillator the smaller the amplitude of the oscillation is.

Contents

As a result, oscillations with frequencies and etc., where is the fundamental frequency of the oscillator, appear. Furthermore, the frequency deviates from the frequency of the harmonic oscillations. See also intermodulation and combination tones. As a first approximation, the frequency shift is proportional to the square of the oscillation amplitude :

In a system of oscillators with natural frequencies , , ... anharmonicity results in additional oscillations with frequencies .

Anharmonicity also modifies the energy profile of the resonance curve, leading to interesting phenomena such as the foldover effect and superharmonic resonance.

General principle

2 DOF elastic pendulum exhibiting anharmonic behavior. Spring pendulum.gif
2 DOF elastic pendulum exhibiting anharmonic behavior.
Harmonic vs. Anharmonic Oscillators
Easy harmonic oscillator.gif
The "block-on-a-spring" is a classic example of harmonic oscillation. Depending on the block's location, x, it will experience a restoring force toward the middle. The restoring force is proportional to x, so the system exhibits simple harmonic motion.
Oscillating pendulum.gif
A pendulum is a simple anharmonic oscillator. Depending on the mass's angular position θ, a restoring force pushes coordinate θ back towards the middle. This oscillator is anharmonic because the restoring force is not proportional to θ, but to sin(θ). Because the linear function y = θ approximates the nonlinear function y = sin(θ) when θ is small, the system can be modeled as a harmonic oscillator for small oscillations.

An oscillator is a physical system characterized by periodic motion, such as a pendulum, tuning fork, or vibrating diatomic molecule. Mathematically speaking, the essential feature of an oscillator is that for some coordinate x of the system, a force whose magnitude depends on x will push x away from extreme values and back toward some central value x0, causing x to oscillate between extremes. For example, x may represent the displacement of a pendulum from its resting position x=0. As the absolute value of x increases, so does the restoring force acting on the pendulums weight that pushes it back towards its resting position.

In harmonic oscillators, the restoring force is proportional in magnitude (and opposite in direction) to the displacement of x from its natural position x0. The resulting differential equation implies that x must oscillate sinusoidally over time, with a period of oscillation that is inherent to the system. x may oscillate with any amplitude, but will always have the same period.

Anharmonic oscillators, however, are characterized by the nonlinear dependence of the restorative force on the displacement x. Consequently, the anharmonic oscillator's period of oscillation may depend on its amplitude of oscillation.

As a result of the nonlinearity of anharmonic oscillators, the vibration frequency can change, depending upon the system's displacement. These changes in the vibration frequency result in energy being coupled from the fundamental vibration frequency to other frequencies through a process known as parametric coupling.[ clarification needed ]

Treating the nonlinear restorative force as a function F(xx0) of the displacement of x from its natural position, we may replace F by its linear approximation F1 = F(0) (xx0) at zero displacement. The approximating function F1 is linear, so it will describe simple harmonic motion. Further, this function F1 is accurate when xx0 is small. For this reason, anharmonic motion can be approximated as harmonic motion as long as the oscillations are small.

Examples in physics

There are many systems throughout the physical world that can be modeled as anharmonic oscillators in addition to the nonlinear mass-spring system. For example, an atom, which consists of a positively charged nucleus surrounded by a negatively charged electronic cloud, experiences a displacement between the center of mass of the nucleus and the electronic cloud when an electric field is present. The amount of that displacement, called the electric dipole moment, is related linearly to the applied field for small fields, but as the magnitude of the field is increased, the field-dipole moment relationship becomes nonlinear, just as in the mechanical system.

Further examples of anharmonic oscillators include the large-angle pendulum; nonequilibrium semiconductors that possess a large hot carrier population, which exhibit nonlinear behaviors of various types related to the effective mass of the carriers; and ionospheric plasmas, which also exhibit nonlinear behavior based on the anharmonicity of the plasma, transversal oscillating strings. In fact, virtually all oscillators become anharmonic when their pump amplitude increases beyond some threshold, and as a result it is necessary to use nonlinear equations of motion to describe their behavior.

Anharmonicity plays a role in lattice and molecular vibrations, in quantum oscillations, [1] and in acoustics. The atoms in a molecule or a solid vibrate about their equilibrium positions. When these vibrations have small amplitudes they can be described by harmonic oscillators. However, when the vibrational amplitudes are large, for example at high temperatures, anharmonicity becomes important. An example of the effects of anharmonicity is the thermal expansion of solids, which is usually studied within the quasi-harmonic approximation. Studying vibrating anharmonic systems using quantum mechanics is a computationally demanding task because anharmonicity not only makes the potential experienced by each oscillator more complicated, but also introduces coupling between the oscillators. It is possible to use first-principles methods such as density-functional theory to map the anharmonic potential experienced by the atoms in both molecules [2] and solids. [3] Accurate anharmonic vibrational energies can then be obtained by solving the anharmonic vibrational equations for the atoms within a mean-field theory. Finally, it is possible to use Møller–Plesset perturbation theory to go beyond the mean-field formalism.

Period of oscillations

Consider a mass moving in a potential well . The oscillation period may be derived [4]

where the extremes of the motion are given by and .

See also

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Oscillation</span> Repetitive variation of some measure about a central value

Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Resonance</span> Tendency to oscillate at certain frequencies

Resonance is the phenomenon, pertaining to oscillatory dynamical systems, wherein amplitude rises are caused by an external force with time-varying amplitude with the same frequency of variation as the natural frequency of the system. The amplitude rises that occur are a result of the fact that applied external forces at the natural frequency entail a net increase in mechanical energy of the system.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.

<i>Q</i> factor Parameter describing the longevity of energy in a resonator relative to its resonant frequency

In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

<span class="mw-page-title-main">Normal mode</span> Pattern of oscillating motion in a system

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

In physics, complex harmonic motion is a complicated realm based on the simple harmonic motion. The word "complex" refers to different situations. Unlike simple harmonic motion, which is regardless of air resistance, friction, etc., complex harmonic motion often has additional forces to dissipate the initial energy and lessen the speed and amplitude of an oscillation until the energy of the system is totally drained and the system comes to rest at its equilibrium point.

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by

<span class="mw-page-title-main">Mechanical resonance</span> Tendency of a mechanical system

Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.

<span class="mw-page-title-main">Parametric oscillator</span>

A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameters of the system at some frequencies, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .

A mechanical amplifier or a mechanical amplifying element is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous, causing situations such as the 1940 Tacoma Narrows Bridge collapse. When employed appropriately, it can help to magnify small mechanical signals for practical applications.

In the physics of coupled oscillators, antiresonance, by analogy with resonance, is a pronounced minimum in the amplitude of an oscillator at a particular frequency, accompanied by a large, abrupt shift in its oscillation phase. Such frequencies are known as the system's antiresonant frequencies, and at these frequencies the oscillation amplitude can drop to almost zero. Antiresonances are caused by destructive interference, for example between an external driving force and interaction with another oscillator.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

In physics, nonlinear resonance is the occurrence of resonance in a nonlinear system. In nonlinear resonance the system behaviour – resonance frequencies and modes – depends on the amplitude of the oscillations, while for linear systems this is independent of amplitude. The mixing of modes in non-linear systems is termed resonant interaction.

<span class="mw-page-title-main">Kapitza's pendulum</span>

Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down. It is named after Russian Nobel laureate physicist Pyotr Kapitza, who in 1951 developed a theory which successfully explains some of its unusual properties. The unique feature of the Kapitza pendulum is that the vibrating suspension can cause it to balance stably in an inverted position, with the bob above the suspension point. In the usual pendulum with a fixed suspension, the only stable equilibrium position is with the bob hanging below the suspension point; the inverted position is a point of unstable equilibrium, and the smallest perturbation moves the pendulum out of equilibrium. In nonlinear control theory the Kapitza pendulum is used as an example of a parametric oscillator that demonstrates the concept of "dynamic stabilization".

<span class="mw-page-title-main">Cavity optomechanics</span>

Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.

Rayleigh–Lorentz pendulum is a simple pendulum, but subjected to a slowly varying frequency due to an external action, named after Lord Rayleigh and Hendrik Lorentz. This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of the slow variation of frequency, it is shown that the ratio of average energy to frequency is constant.

References

  1. Lim, Kieran F.; Coleman, William F. (August 2005), "The Effect of Anharmonicity on Diatomic Vibration: A Spreadsheet Simulation", J. Chem. Educ., 82 (8): 1263, Bibcode:2005JChEd..82.1263F, doi: 10.1021/ed082p1263.1
  2. Jung, J. O.; Benny Gerber, R. (1996), "Vibrational wave functions and spectroscopy of (H2O)n, n=2,3,4,5: Vibrational self-consistent field with correlation corrections", J. Chem. Phys., 105 (23): 10332, Bibcode:1996JChPh.10510332J, doi:10.1063/1.472960
  3. Monserrat, B.; Drummond, N.D.; Needs, R.J. (2013), "Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress", Phys. Rev. B, 87 (14): 144302, arXiv: 1303.0745 , Bibcode:2013PhRvB..87n4302M, doi:10.1103/PhysRevB.87.144302, S2CID   118687212
  4. Amore, Paolo; Fernández, Francisco M. (2005). "Exact and approximate expressions for the period of anharmonic oscillators". European Journal of Physics. 26 (4): 589–601. arXiv: math-ph/0409034 . Bibcode:2005EJPh...26..589A. doi:10.1088/0143-0807/26/4/004. S2CID   119615357.