Mean-field theory

Last updated

In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom (the number of values in the final calculation of a statistic that are free to vary). Such models consider many individual components that interact with each other.

Contents

The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. [1] This reduces any many-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost.

MFT has since been applied to a wide range of fields outside of physics, including statistical inference, graphical models, neuroscience, [2] artificial intelligence, epidemic models, [3] queueing theory, [4] computer-network performance and game theory, [5] as in the quantal response equilibrium [ citation needed ].

Origins

The idea first appeared in physics (statistical mechanics) in the work of Pierre Curie [6] and Pierre Weiss to describe phase transitions. [7] MFT has been used in the Bragg–Williams approximation, models on Bethe lattice, Landau theory, Curie-Weiss law for magnetic susceptibility, Flory–Huggins solution theory, and Scheutjens–Fleer theory.

Systems with many (sometimes infinite) degrees of freedom are generally hard to solve exactly or compute in closed, analytic form, except for some simple cases (e.g. certain Gaussian random-field theories, the 1D Ising model). Often combinatorial problems arise that make things like computing the partition function of a system difficult. MFT is an approximation method that often makes the original problem to be solvable and open to calculation, and in some cases MFT may give very accurate approximations.

In field theory, the Hamiltonian may be expanded in terms of the magnitude of fluctuations around the mean of the field. In this context, MFT can be viewed as the "zeroth-order" expansion of the Hamiltonian in fluctuations. Physically, this means that an MFT system has no fluctuations, but this coincides with the idea that one is replacing all interactions with a "mean-field”.

Quite often, MFT provides a convenient launch point for studying higher-order fluctuations. For example, when computing the partition function, studying the combinatorics of the interaction terms in the Hamiltonian can sometimes at best produce perturbation results or Feynman diagrams that correct the mean-field approximation.

Validity

In general, dimensionality plays an active role in determining whether a mean-field approach will work for any particular problem. There is sometimes a critical dimension above which MFT is valid and below which it is not.

Heuristically, many interactions are replaced in MFT by one effective interaction. So if the field or particle exhibits many random interactions in the original system, they tend to cancel each other out, so the mean effective interaction and MFT will be more accurate. This is true in cases of high dimensionality, when the Hamiltonian includes long-range forces, or when the particles are extended (e.g. polymers). The Ginzburg criterion is the formal expression of how fluctuations render MFT a poor approximation, often depending upon the number of spatial dimensions in the system of interest.

Formal approach (Hamiltonian)

The formal basis for mean-field theory is the Bogoliubov inequality. This inequality states that the free energy of a system with Hamiltonian

has the following upper bound:

where is the entropy, and and are Helmholtz free energies. The average is taken over the equilibrium ensemble of the reference system with Hamiltonian . In the special case that the reference Hamiltonian is that of a non-interacting system and can thus be written as

where are the degrees of freedom of the individual components of our statistical system (atoms, spins and so forth), one can consider sharpening the upper bound by minimising the right side of the inequality. The minimising reference system is then the "best" approximation to the true system using non-correlated degrees of freedom and is known as the mean field approximation.

For the most common case that the target Hamiltonian contains only pairwise interactions, i.e.,

where is the set of pairs that interact, the minimising procedure can be carried out formally. Define as the generalized sum of the observable over the degrees of freedom of the single component (sum for discrete variables, integrals for continuous ones). The approximating free energy is given by

where is the probability to find the reference system in the state specified by the variables . This probability is given by the normalized Boltzmann factor

where is the partition function. Thus

In order to minimise, we take the derivative with respect to the single-degree-of-freedom probabilities using a Lagrange multiplier to ensure proper normalization. The end result is the set of self-consistency equations

where the mean field is given by

Applications

Mean field theory can be applied to a number of physical systems so as to study phenomena such as phase transitions. [8]

Ising model

Formal derivation

The Bogoliubov inequality, shown above, can be used to find the dynamics of a mean field model of the two-dimensional Ising lattice. A magnetisation function can be calculated from the resultant approximate free energy. [9] The first step is choosing a more tractable approximation of the true Hamiltonian. Using a non-interacting or effective field Hamiltonian,

,

the variational free energy is

By the Bogoliubov inequality, simplifying this quantity and calculating the magnetisation function that minimises the variational free energy yields the best approximation to the actual magnetisation. The minimiser is

which is the ensemble average of spin. This simplifies to

Equating the effective field felt by all spins to a mean spin value relates the variational approach to the suppression of fluctuations. The physical interpretation of the magnetisation function is then a field of mean values for individual spins.

Non-interacting spins approximation

Consider the Ising model on a -dimensional lattice. The Hamiltonian is given by

where the indicates summation over the pair of nearest neighbors , and are neighboring Ising spins.

Let us transform our spin variable by introducing the fluctuation from its mean value . We may rewrite the Hamiltonian as

where we define ; this is the fluctuation of the spin.

If we expand the right side, we obtain one term that is entirely dependent on the mean values of the spins and independent of the spin configurations. This is the trivial term, which does not affect the statistical properties of the system. The next term is the one involving the product of the mean value of the spin and the fluctuation value. Finally, the last term involves a product of two fluctuation values.

The mean field approximation consists of neglecting this second-order fluctuation term:

These fluctuations are enhanced at low dimensions, making MFT a better approximation for high dimensions.

Again, the summand can be re-expanded. In addition, we expect that the mean value of each spin is site-independent, since the Ising chain is translationally invariant. This yields

The summation over neighboring spins can be rewritten as , where means "nearest neighbor of ", and the prefactor avoids double counting, since each bond participates in two spins. Simplifying leads to the final expression

where is the coordination number. At this point, the Ising Hamiltonian has been decoupled into a sum of one-body Hamiltonians with an effective mean field, which is the sum of the external field and of the mean field induced by the neighboring spins. It is worth noting that this mean field directly depends on the number of nearest neighbors and thus on the dimension of the system (for instance, for a hypercubic lattice of dimension , ).

Substituting this Hamiltonian into the partition function and solving the effective 1D problem, we obtain

where is the number of lattice sites. This is a closed and exact expression for the partition function of the system. We may obtain the free energy of the system and calculate critical exponents. In particular, we can obtain the magnetization as a function of .

We thus have two equations between and , allowing us to determine as a function of temperature. This leads to the following observation:

  • For temperatures greater than a certain value , the only solution is . The system is paramagnetic.
  • For , there are two non-zero solutions: . The system is ferromagnetic.

is given by the following relation: .

This shows that MFT can account for the ferromagnetic phase transition.

Application to other systems

Similarly, MFT can be applied to other types of Hamiltonian as in the following cases:

Variationally minimisation like mean field theory can be also be used in statistical inference.

Extension to time-dependent mean fields

In mean field theory, the mean field appearing in the single-site problem is a time-independent scalar or vector quantity. However, this isn't always the case: in a variant of mean field theory called dynamical mean field theory (DMFT), the mean field becomes a time-dependent quantity. For instance, DMFT can be applied to the Hubbard model to study the metal–Mott-insulator transition.

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Helmholtz free energy</span> Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Lattice model (physics)</span>

In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Fine structure</span> Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In quantum field theory and statistical mechanics, the Hohenberg–Mermin–Wagner theorem or Mermin–Wagner theorem states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2. Intuitively, this theorem implies that long-range fluctuations can be created with little energy cost, and since they increase the entropy, they are favored.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

<span class="mw-page-title-main">Random phase approximation</span>

The random phase approximation (RPA) is an approximation method in condensed matter physics and nuclear physics. It was first introduced by David Bohm and David Pines as an important result in a series of seminal papers of 1952 and 1953. For decades physicists had been trying to incorporate the effect of microscopic quantum mechanical interactions between electrons in the theory of matter. Bohm and Pines' RPA accounts for the weak screened Coulomb interaction and is commonly used for describing the dynamic linear electronic response of electron systems. It was further developed to the relativistic form (RRPA) by solving the Dirac equation.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

Dynamical mean-field theory (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in density functional theory and usual band structure calculations, breaks down. Dynamical mean-field theory, a non-perturbative treatment of local interactions between electrons, bridges the gap between the nearly free electron gas limit and the atomic limit of condensed-matter physics.

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

In applied mathematical analysis, shearlets are a multiscale framework which allows efficient encoding of anisotropic features in multivariate problem classes. Originally, shearlets were introduced in 2006 for the analysis and sparse approximation of functions . They are a natural extension of wavelets, to accommodate the fact that multivariate functions are typically governed by anisotropic features such as edges in images, since wavelets, as isotropic objects, are not capable of capturing such phenomena.

Information field theory (IFT) is a Bayesian statistical field theory relating to signal reconstruction, cosmography, and other related areas. IFT summarizes the information available on a physical field using Bayesian probabilities. It uses computational techniques developed for quantum field theory and statistical field theory to handle the infinite number of degrees of freedom of a field and to derive algorithms for the calculation of field expectation values. For example, the posterior expectation value of a field generated by a known Gaussian process and measured by a linear device with known Gaussian noise statistics is given by a generalized Wiener filter applied to the measured data. IFT extends such known filter formula to situations with nonlinear physics, nonlinear devices, non-Gaussian field or noise statistics, dependence of the noise statistics on the field values, and partly unknown parameters of measurement. For this it uses Feynman diagrams, renormalisation flow equations, and other methods from mathematical physics.

In condensed matter and atomic physics, Van Vleck paramagnetism refers to a positive and temperature-independent contribution to the magnetic susceptibility of a material, derived from second order corrections to the Zeeman interaction. The quantum mechanical theory was developed by John Hasbrouck Van Vleck between the 1920s and the 1930s to explain the magnetic response of gaseous nitric oxide and of rare-earth salts. Alongside other magnetic effects like Paul Langevin's formulas for paramagnetism and diamagnetism, Van Vleck discovered an additional paramagnetic contribution of the same order as Langevin's diamagnetism. Van Vleck contribution is usually important for systems with one electron short of being half filled and this contribution vanishes for elements with closed shells.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

Phase space crystal is the state of a physical system that displays discrete symmetry in phase space instead of real space. For a single-particle system, the phase space crystal state refers to the eigenstate of the Hamiltonian for a closed quantum system or the eigenoperator of the Liouvillian for an open quantum system. For a many-body system, phase space crystal is the solid-like crystalline state in phase space. The general framework of phase space crystals is to extend the study of solid state physics and condensed matter physics into phase space of dynamical systems. While real space has Euclidean geometry, phase space is embedded with classical symplectic geometry or quantum noncommutative geometry.

References

  1. Chaikin, P. M.; Lubensky, T. C. (2007). Principles of condensed matter physics (4th print ed.). Cambridge: Cambridge University Press. ISBN   978-0-521-79450-3.
  2. Parr, Thomas; Sajid, Noor; Friston, Karl (2020). "Modules or Mean-Fields?" (PDF). Entropy. 22 (552): 552. doi: 10.3390/e22050552 . PMC   7517075 . PMID   33286324 . Retrieved 22 May 2020.
  3. Boudec, J. Y. L.; McDonald, D.; Mundinger, J. (2007). "A Generic Mean Field Convergence Result for Systems of Interacting Objects". Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007) (PDF). p. 3. CiteSeerX   10.1.1.110.2612 . doi:10.1109/QEST.2007.8. ISBN   978-0-7695-2883-0. S2CID   15007784.
  4. Baccelli, F.; Karpelevich, F. I.; Kelbert, M. Y.; Puhalskii, A. A.; Rybko, A. N.; Suhov, Y. M. (1992). "A mean-field limit for a class of queueing networks". Journal of Statistical Physics. 66 (3–4): 803. Bibcode:1992JSP....66..803B. doi:10.1007/BF01055703. S2CID   120840517.
  5. Lasry, J. M.; Lions, P. L. (2007). "Mean field games" (PDF). Japanese Journal of Mathematics. 2: 229–260. doi:10.1007/s11537-007-0657-8. S2CID   1963678.
  6. Kadanoff, L. P. (2009). "More is the Same; Phase Transitions and Mean Field Theories". Journal of Statistical Physics. 137 (5–6): 777–797. arXiv: 0906.0653 . Bibcode:2009JSP...137..777K. doi:10.1007/s10955-009-9814-1. S2CID   9074428.
  7. Weiss, Pierre (1907). "L'hypothèse du champ moléculaire et la propriété ferromagnétique". J. Phys. Theor. Appl. 6 (1): 661–690. doi:10.1051/jphystap:019070060066100.
  8. Stanley, H. E. (1971). "Mean Field Theory of Magnetic Phase Transitions". Introduction to Phase Transitions and Critical Phenomena. Oxford University Press. ISBN   0-19-505316-8.
  9. Sakthivadivel, Dalton A R (Jan 2022). "Magnetisation and Mean Field Theory in the Ising Model". SciPost Physics Lecture Notes. 35: 1–16. arXiv: 2102.00960 . doi: 10.21468/SciPostPhysLectNotes.35 . S2CID   237623181.