Hubbard model

Last updated

2-dimensional Hubbard model. 2D-Hubbard-model.png
2-dimensional Hubbard model.

The Hubbard model is an approximate model used to describe the transition between conducting and insulating systems. [1] It is particularly useful in solid-state physics. The model is named for John Hubbard.

Contents

The Hubbard model states that each electron experiences competing forces: one pushes it to tunnel to neighboring atoms, while the other pushes it away from its neighbors. [2] Its Hamiltonian thus has two terms: a kinetic term allowing for tunneling ("hopping") of particles between lattice sites and a potential term reflecting on-site interaction. The particles can either be fermions, as in Hubbard's original work, or bosons, in which case the model is referred to as the "Bose–Hubbard model".

The Hubbard model is a useful approximation for particles in a periodic potential at sufficiently low temperatures, where all the particles may be assumed to be in the lowest Bloch band, and long-range interactions between the particles can be ignored. If interactions between particles at different sites of the lattice are included, the model is often referred to as the "extended Hubbard model". In particular, the Hubbard term, most commonly denoted by U, is applied in first principles based simulations using Density Functional Theory, DFT. The inclusion of the Hubbard term in DFT simulations is important as this improves the prediction of electron localisation and thus it prevents the incorrect prediction of metallic conduction in insulating systems. [3]

The Hubbard model introduces short-range interactions between electrons to the tight-binding model, which only includes kinetic energy (a "hopping" term) and interactions with the atoms of the lattice (an "atomic" potential). When the interaction between electrons is strong, the behavior of the Hubbard model can be qualitatively different from a tight-binding model. For example, the Hubbard model correctly predicts the existence of Mott insulators: materials that are insulating due to the strong repulsion between electrons, even though they satisfy the usual criteria for conductors, such as having an odd number of electrons per unit cell.

History

The model was originally proposed in 1963 to describe electrons in solids. [4] Hubbard, Martin Gutzwiller and Junjiro Kanamori each independently proposed it. [2]

Since then, it has been applied to the study of high-temperature superconductivity, quantum magnetism, and charge density waves. [5]

Narrow energy band theory

The Hubbard model is based on the tight-binding approximation from solid-state physics, which describes particles moving in a periodic potential, typically referred to as a lattice. For real materials, each lattice site might correspond with an ionic core, and the particles would be the valence electrons of these ions. In the tight-binding approximation, the Hamiltonian is written in terms of Wannier states, which are localized states centered on each lattice site. Wannier states on neighboring lattice sites are coupled, allowing particles on one site to "hop" to another. Mathematically, the strength of this coupling is given by a "hopping integral", or "transfer integral", between nearby sites. The system is said to be in the tight-binding limit when the strength of the hopping integrals falls off rapidly with distance. This coupling allows states associated with each lattice site to hybridize, and the eigenstates of such a crystalline system are Bloch's functions, with the energy levels divided into separated energy bands. The width of the bands depends upon the value of the hopping integral.

The Hubbard model introduces a contact interaction between particles of opposite spin on each site of the lattice. When the Hubbard model is used to describe electron systems, these interactions are expected to be repulsive, stemming from the screened Coulomb interaction. However, attractive interactions have also been frequently considered. The physics of the Hubbard model is determined by competition between the strength of the hopping integral, which characterizes the system's kinetic energy, and the strength of the interaction term. The Hubbard model can therefore explain the transition from metal to insulator in certain interacting systems. For example, it has been used to describe metal oxides as they are heated, where the corresponding increase in nearest-neighbor spacing reduces the hopping integral to the point where the on-site potential is dominant. Similarly, the Hubbard model can explain the transition from conductor to insulator in systems such as rare-earth pyrochlores as the atomic number of the rare-earth metal increases, because the lattice parameter increases (or the angle between atoms can also change) as the rare-earth element atomic number increases, thus changing the relative importance of the hopping integral compared to the on-site repulsion.

Example: one dimensional hydrogen atom chain

The hydrogen atom has one electron, in the so-called s orbital, which can either be spin up () or spin down (). This orbital can be occupied by at most two electrons, one with spin up and one down (see Pauli exclusion principle).

Under band theory, for a 1D chain of hydrogen atoms, the 1s orbital forms a continuous band, which would be exactly half-full. The 1D chain of hydrogen atoms is thus predicted to be a conductor under conventional band theory. This 1D string is the only configuration simple enough to be solved directly. [2]

But in the case where the spacing between the hydrogen atoms is gradually increased, at some point the chain must become an insulator.

Expressed using the Hubbard model, the Hamiltonian is made up of two terms. The first term describes the kinetic energy of the system, parameterized by the hopping integral, . The second term is the on-site interaction of strength that represents the electron repulsion. Written out in second quantization notation, the Hubbard Hamiltonian then takes the form

where is the spin-density operator for spin on the -th site. The density operator is and occupation of -th site for the wavefunction is . Typically t is taken to be positive, and U may be either positive or negative, but is assumed to be positive when considering electronic systems.

Without the contribution of the second term, the Hamiltonian resolves to the tight binding formula from regular band theory.

Including the second term yields a realistic model that also predicts a transition from conductor to insulator as the ratio of interaction to hopping, , is varied. This ratio can be modified by, for example, increasing the inter-atomic spacing, which would decrease the magnitude of without affecting . In the limit where , the chain simply resolves into a set of isolated magnetic moments. If is not too large, the overlap integral provides for superexchange interactions between neighboring magnetic moments, which may lead to a variety of interesting magnetic correlations, such as ferromagnetic, antiferromagnetic, etc. depending on the model parameters. The one-dimensional Hubbard model was solved by Lieb and Wu using the Bethe ansatz. Essential progress was achieved in the 1990s: a hidden symmetry was discovered, and the scattering matrix, correlation functions, thermodynamic and quantum entanglement were evaluated. [6]

More complex systems

Although Hubbard is useful in describing systems such as a 1D chain of hydrogen atoms, it is important to note that more complex systems may experience other effects that the Hubbard model does not consider. In general, insulators can be divided into Mott–Hubbard insulators and charge-transfer insulators.

A Mott–Hubbard insulator can be described as

This can be seen as analogous to the Hubbard model for hydrogen chains, where conduction between unit cells can be described by a transfer integral.

However, it is possible for the electrons to exhibit another kind of behavior:

This is known as charge transfer and results in charge-transfer insulators. Unlike Mott–Hubbard insulators electron transfer happens only within a unit cell.

Both of these effects may be present and compete in complex ionic systems.

Numerical treatment

The fact that the Hubbard model has not been solved analytically in arbitrary dimensions has led to intense research into numerical methods for these strongly correlated electron systems. [7] [8] One major goal of this research is to determine the low-temperature phase diagram of this model, particularly in two-dimensions. Approximate numerical treatment of the Hubbard model on finite systems is possible via various methods.

One such method, the Lanczos algorithm, can produce static and dynamic properties of the system. Ground state calculations using this method require the storage of three vectors of the size of the number of states. The number of states scales exponentially with the size of the system, which limits the number of sites in the lattice to about 20 on 21st century hardware. With projector and finite-temperature auxiliary-field Monte Carlo, two statistical methods exist that can obtain certain properties of the system. For low temperatures, convergence problems appear that lead to an exponential computational effort with decreasing temperature due to the so-called fermion sign problem.

The Hubbard model can be studied within dynamical mean-field theory (DMFT). This scheme maps the Hubbard Hamiltonian onto a single-site impurity model, a mapping that is formally exact only in infinite dimensions and in finite dimensions corresponds to the exact treatment of all purely local correlations only. DMFT allows one to compute the local Green's function of the Hubbard model for a given and a given temperature. Within DMFT, the evolution of the spectral function can be computed and the appearance of the upper and lower Hubbard bands can be observed as correlations increase.

Simulator

Stacks of heterogeneous 2-dimensional transition metal dichalcogenides (TMD) have been used to simulate geometries in more than one dimension. Tungsten diselenide and tungsten sulfide were stacked. This created a moiré superlattice consisting of hexagonal supercells (repetition units defined by the relationship of the two materials). Each supercell then behaves as though it were a single atom. The distance between supercells is roughly 100x that of the atoms within them. This larger distance drastically reduces electron tunneling across supercells. [2]

They can be used to form Wigner crystals. Electrodes can be attached to regulate an electric field. The electric field controls how many electrons fill each supercell. The number of electrons per supercell effectively determines which "atom" the lattice simulates. One electron/cell behaves like hydrogen, two/cell like helium, etc. As of 2022, supercells with up to eight electrons (oxygen) could be simulated. One result of the simulation showed that the difference between metal and insulator is a continuous function of the electric field strength. [2]

A "backwards" stacking regime allows the creation of a Chern insulator via the anomalous quantum Hall effect (with the edges of the device acting as a conductor while the interior acted as an insulator.) The device functioned at a temperature of 5 Kelvins, far above the temperature at which the effect had first been observed. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Mott insulator</span> Materials classically predicted to be conductors, that are actually insulators

Mott insulators are a class of materials that are expected to conduct electricity according to conventional band theories, but turn out to be insulators. These insulators fail to be correctly described by band theories of solids due to their strong electron–electron interactions, which are not considered in conventional band theory. A Mott transition is a transition from a metal to an insulator, driven by the strong interactions between electrons. One of the simplest models that can capture Mott transition is the Hubbard model.

In solid-state physics, the tight-binding model is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the LCAO method used in chemistry. Tight-binding models are applied to a wide variety of solids. The model gives good qualitative results in many cases and can be combined with other models that give better results where the tight-binding model fails. Though the tight-binding model is a one-electron model, the model also provides a basis for more advanced calculations like the calculation of surface states and application to various kinds of many-body problem and quasiparticle calculations.

<span class="mw-page-title-main">Optical lattice</span> Atomic-scale structure formed through the Stark shift by opposing beams of light

An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema. The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.

In quantum field theory and statistical mechanics, the Hohenberg–Mermin–Wagner theorem or Mermin–Wagner theorem states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2. Intuitively, this theorem implies that long-range fluctuations can be created with little energy cost, and since they increase the entropy, they are favored.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

<i>t</i>-<i>J</i> model

In solid-state physics, the t-J model is a model first derived by Józef Spałek to explain antiferromagnetic properties of Mott insulators, taking into account experimental results about the strength of electron-electron repulsion in these materials.

The Anderson impurity model, named after Philip Warren Anderson, is a Hamiltonian that is used to describe magnetic impurities embedded in metals. It is often applied to the description of Kondo effect-type problems, such as heavy fermion systems and Kondo insulators. In its simplest form, the model contains a term describing the kinetic energy of the conduction electrons, a two-level term with an on-site Coulomb repulsion that models the impurity energy levels, and a hybridization term that couples conduction and impurity orbitals. For a single impurity, the Hamiltonian takes the form

In applied mathematics, the numerical sign problem is the problem of numerically evaluating the integral of a highly oscillatory function of a large number of variables. Numerical methods fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high precision in order for their difference to be obtained with useful accuracy.

Dynamical mean-field theory (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in density functional theory and usual band structure calculations, breaks down. Dynamical mean-field theory, a non-perturbative treatment of local interactions between electrons, bridges the gap between the nearly free electron gas limit and the atomic limit of condensed-matter physics.

The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane. This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward with Yurii A. Bychkov in 1984 for two-dimensional systems.

In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that attempts to describe high-temperature superconductivity, and in particular the superconductivity in cuprate compounds. It was first proposed by an American physicist P. W. Anderson and Indian theoretical physicist Ganapathy Baskaran in 1987. The theory states that in copper oxide lattices, electrons from neighboring copper atoms interact to form a valence bond, which locks them in place. However, with doping, these electrons can act as mobile Cooper pairs and are able to superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped cuprates was in the Mott insulator nature of crystalline copper oxide. RVB builds on the Hubbard and t-J models used in the study of strongly correlated materials.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

<span class="mw-page-title-main">Jaynes–Cummings–Hubbard model</span> Model in quantum optics

The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.

<span class="mw-page-title-main">Superradiant phase transition</span> Process in quantum optics

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters, between a state containing few electromagnetic excitations and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

In physics, the total position-spread (TPS) tensor is a quantity originally introduced in the modern theory of electrical conductivity. In the case of molecular systems, this tensor measures the fluctuation of the electrons around their mean positions, which corresponds to the delocalization of the electronic charge within a molecular system. The total position-spread can discriminate between metals and insulators taking information from the ground state wave function. This quantity can be very useful as an indicator to characterize Intervalence charge transfer processes, the bond nature of molecules, and Metal–insulator transition.

In solid state physics, the Luttinger–Ward functional, proposed by Joaquin Mazdak Luttinger and John Clive Ward in 1960, is a scalar functional of the bare electron-electron interaction and the renormalized one-particle propagator. In terms of Feynman diagrams, the Luttinger–Ward functional is the sum of all closed, bold, two-particle irreducible diagrams, i.e., all diagrams without particles going in or out that do not fall apart if one removes two propagator lines. It is usually written as or , where is the one-particle Green's function and is the bare interaction.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

A spin chain is a type of model in statistical physics. Spin chains were originally formulated to model magnetic systems, which typically consist of particles with magnetic spin located at fixed sites on a lattice. A prototypical example is the quantum Heisenberg model. Interactions between the sites are modelled by operators which act on two different sites, often neighboring sites.

References

  1. Altland, A.; Simons, B. (2006). "Interaction effects in the tight-binding system". Condensed Matter Field Theory. Cambridge University Press. pp. 58 ff. ISBN   978-0-521-84508-3.
  2. 1 2 3 4 5 6 Wood, Charlie (16 August 2022). "Physics Duo Finds Magic in Two Dimensions". Quanta Magazine. Retrieved 21 August 2022.
  3. Fronzi, Marco; Assadi, M. Hussein N.; Hanaor, Dorian A.H. (2019). "Theoretical insights into the hydrophobicity of low index CeO2 surfaces". Applied Surface Science. 478: 68–74. arXiv: 1902.02662 . Bibcode:2019ApSS..478...68F. doi:10.1016/j.apsusc.2019.01.208. S2CID   118895100.
  4. Hubbard, J. (26 November 1963). "Electron correlations in narrow energy bands". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 276 (1365): 238–257. Bibcode:1963RSPSA.276..238H. doi:10.1098/rspa.1963.0204. ISSN   0080-4630. S2CID   35439962.
  5. Auerbach, Assa. (1994). Interacting electrons and quantum magnetism. New York: Springer-Verlag. ISBN   0-387-94286-6. OCLC   30028928.
  6. Essler, F. H. L.; Frahm, H.; Göhmann, F.; Klümper, A.; Korepin, V. E. (2005). The One-Dimensional Hubbard Model. Cambridge University Press. ISBN   978-0-521-80262-8.
  7. Scalapino, D. J. (2006). "Numerical Studies of the 2D Hubbard Model": cond–mat/0610710. arXiv: cond-mat/0610710 . Bibcode:2006cond.mat.10710S.{{cite journal}}: Cite journal requires |journal= (help)
  8. LeBlanc, J. (2015). "Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms". Physical Review X. 5 (4): 041041. arXiv: 1505.02290 . Bibcode:2015PhRvX...5d1041L. doi: 10.1103/PhysRevX.5.041041 .

Further reading