Critical phenomena

Last updated

In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities (such as the magnetic susceptibility in the ferromagnetic phase transition) described by critical exponents, universality, fractal behaviour, and ergodicity breaking. Critical phenomena take place in second order phase transitions, although not exclusively.

Contents

The critical behavior is usually different from the mean-field approximation which is valid away from the phase transition, since the latter neglects correlations, which become increasingly important as the system approaches the critical point where the correlation length diverges. Many properties of the critical behavior of a system can be derived in the framework of the renormalization group.

In order to explain the physical origin of these phenomena, we shall use the Ising model as a pedagogical example.

The critical point of the 2D Ising model

Consider a square array of classical spins which may only take two positions: +1 and 1, at a certain temperature , interacting through the Ising classical Hamiltonian:

where the sum is extended over the pairs of nearest neighbours and is a coupling constant, which we will consider to be fixed. There is a certain temperature, called the Curie temperature or critical temperature, below which the system presents ferromagnetic long range order. Above it, it is paramagnetic and is apparently disordered.

At temperature zero, the system may only take one global sign, either +1 or -1. At higher temperatures, but below , the state is still globally magnetized, but clusters of the opposite sign appear. As the temperature increases, these clusters start to contain smaller clusters themselves, in a typical Russian dolls picture. Their typical size, called the correlation length, grows with temperature until it diverges at . This means that the whole system is such a cluster, and there is no global magnetization. Above that temperature, the system is globally disordered, but with ordered clusters within it, whose size is again called correlation length, but it is now decreasing with temperature. At infinite temperature, it is again zero, with the system fully disordered.

Divergences at the critical point

The correlation length diverges at the critical point: as , . This divergence poses no physical problem. Other physical observables diverge at this point, leading to some confusion at the beginning.

The most important is susceptibility. Let us apply a very small magnetic field to the system in the critical point. A very small magnetic field is not able to magnetize a large coherent cluster, but with these fractal clusters the picture changes. It affects easily the smallest size clusters, since they have a nearly paramagnetic behaviour. But this change, in its turn, affects the next-scale clusters, and the perturbation climbs the ladder until the whole system changes radically. Thus, critical systems are very sensitive to small changes in the environment.

Other observables, such as the specific heat, may also diverge at this point. All these divergences stem from that of the correlation length.

Critical exponents and universality

As we approach the critical point, these diverging observables behave as for some exponent where, typically, the value of the exponent α is the same above and below Tc. These exponents are called critical exponents and are robust observables. Even more, they take the same values for very different physical systems. This intriguing phenomenon, called universality, is explained, qualitatively and also quantitatively, by the renormalization group. [1]

Critical dynamics

Critical phenomena may also appear for dynamic quantities, not only for static ones. In fact, the divergence of the characteristic time of a system is directly related to the divergence of the thermal correlation length by the introduction of a dynamical exponent z and the relation  . [2] The voluminous static universality class of a system splits into different, less voluminous dynamic universality classes with different values of z but a common static critical behaviour, and by approaching the critical point one may observe all kinds of slowing-down phenomena. The divergence of relaxation time at criticality leads to singularities in various collective transport quantities, e.g., the interdiffusivity, shear viscosity , [3] and bulk viscosity . The dynamic critical exponents follow certain scaling relations, viz., , where d is the space dimension. There is only one independent dynamic critical exponent. Values of these exponents are dictated by several universality classes. According to the Hohenberg−Halperin nomenclature, [4] for the model H [5] universality class (fluids) .

Ergodicity breaking

Ergodicity is the assumption that a system, at a given temperature, explores the full phase space, just each state takes different probabilities. In an Ising ferromagnet below this does not happen. If , never mind how close they are, the system has chosen a global magnetization, and the phase space is divided into two regions. From one of them it is impossible to reach the other, unless a magnetic field is applied, or temperature is raised above .

See also superselection sector

Mathematical tools

The main mathematical tools to study critical points are renormalization group, which takes advantage of the Russian dolls picture or the self-similarity to explain universality and predict numerically the critical exponents, and variational perturbation theory, which converts divergent perturbation expansions into convergent strong-coupling expansions relevant to critical phenomena. In two-dimensional systems, conformal field theory is a powerful tool which has discovered many new properties of 2D critical systems, employing the fact that scale invariance, along with a few other requisites, leads to an infinite symmetry group.

Critical point in renormalization group theory

The critical point is described by a conformal field theory. According to the renormalization group theory, the defining property of criticality is that the characteristic length scale of the structure of the physical system, also known as the correlation length ξ, becomes infinite. This can happen along critical lines in phase space. This effect is the cause of the critical opalescence that can be observed as a binary fluid mixture approaches its liquid–liquid critical point.

In systems in equilibrium, the critical point is reached only by precisely tuning a control parameter. However, in some non-equilibrium systems, the critical point is an attractor of the dynamics in a manner that is robust with respect to system parameters, a phenomenon referred to as self-organized criticality. [6]

Applications

Applications arise in physics and chemistry, but also in fields such as sociology. For example, it is natural to describe a system of two political parties by an Ising model. Thereby, at a transition from one majority to the other, the above-mentioned critical phenomena may appear. [7]

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Phase transition</span> Physical process of transition between basic states of matter

In chemistry, thermodynamics, and other related fields, a phase transition is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure. This can be a discontinuous change; for example, a liquid may become gas upon heating to its boiling point, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.

In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom. Such models consider many individual components that interact with each other.

In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases. Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a physical parameter—such as magnetic field or pressure—at absolute zero temperature. The transition describes an abrupt change in the ground state of a many-body system due to its quantum fluctuations. Such a quantum phase transition can be a second-order phase transition. Quantum phase transitions can also be represented by the topological fermion condensation quantum phase transition, see e.g. strongly correlated quantum spin liquid. In case of three dimensional Fermi liquid, this transition transforms the Fermi surface into a Fermi volume. Such a transition can be a first-order phase transition, for it transforms two dimensional structure into three dimensional. As a result, the topological charge of Fermi liquid changes abruptly, since it takes only one of a discrete set of values.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

Landau theory in physics is a theory that Lev Landau introduced in an attempt to formulate a general theory of continuous phase transitions. It can also be adapted to systems under externally-applied fields, and used as a quantitative model for discontinuous transitions. Although the theory has now been superseded by the renormalization group and scaling theory formulations, it remains an exceptionally broad and powerful framework for phase transitions, and the associated concept of the order parameter as a descriptor of the essential character of the transition has proven transformative.

<span class="mw-page-title-main">Correlation function (statistical mechanics)</span> Measure of a systems order

In statistical mechanics, the correlation function is a measure of the order in a system, as characterized by a mathematical correlation function. Correlation functions describe how microscopic variables, such as spin and density, at different positions are related. More specifically, correlation functions quantify how microscopic variables co-vary with one another on average across space and time. A classic example of such spatial correlations is in ferro- and antiferromagnetic materials, where the spins prefer to align parallel and antiparallel with their nearest neighbors, respectively. The spatial correlation between spins in such materials is shown in the figure to the right.

In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on:

The Binder parameter or Binder cumulant in statistical physics, also known as the fourth-order cumulant is defined as the kurtosis of the order parameter, s, introduced by Austrian theoretical physicist Kurt Binder. It is frequently used to determine accurately phase transition points in numerical simulations of various models.

Multicritical points are special points in the parameter space of thermodynamic or other systems with a continuous phase transition. At least two thermodynamic or other parameters must be adjusted to reach a multicritical point. At a multicritical point the system belongs to a universality class different from the "normal" universality class.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

The Kibble–Zurek mechanism (KZM) describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate. It is named after Tom W. B. Kibble, who pioneered the study of domain structure formation through cosmological phase transitions in the early universe, and Wojciech H. Zurek, who related the number of defects it creates to the critical exponents of the transition and to its rate—to how quickly the critical point is traversed.

Phase Transitions and Critical Phenomena is a 20-volume series of books, comprising review articles on phase transitions and critical phenomena, published during 1972-2001. It is "considered the most authoritative series on the topic".

The KTHNY-theory describes the melting of crystals in two dimensions (2D). The name is derived from the initials of the surnames of John Michael Kosterlitz, David J. Thouless, Bertrand Halperin, David R. Nelson, and A. Peter Young, who developed the theory in the 1970s. It is, beside the Ising model in 2D and the XY model in 2D, one of the few theories, which can be solved analytically and which predicts a phase transition at a temperature .

In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.

References

  1. Fisher, Michael E. (1998-04-01). "Renormalization group theory: Its basis and formulation in statistical physics". Reviews of Modern Physics. 70 (2): 653–681. Bibcode:1998RvMP...70..653F. doi:10.1103/RevModPhys.70.653.
  2. P. C. Hohenberg und B. I. Halperin, Theory of dynamic critical phenomena , Rev. Mod. Phys. 49 (1977) 435.
  3. Roy, Sutapa; Dietrich, S.; Höfling, Felix (2016-10-05). "Structure and dynamics of binary liquid mixtures near their continuous demixing transitions". The Journal of Chemical Physics. 145 (13): 134505. arXiv: 1606.05595 . Bibcode:2016JChPh.145m4505R. doi:10.1063/1.4963771. ISSN   0021-9606. PMID   27782419. S2CID   37016085.
  4. Hohenberg, P. C.; Halperin, B. I. (1977-07-01). "Theory of dynamic critical phenomena". Reviews of Modern Physics. 49 (3): 435–479. Bibcode:1977RvMP...49..435H. doi:10.1103/RevModPhys.49.435. S2CID   122636335.
  5. Folk, R; Moser, G (2006-05-31). "Critical dynamics: a field-theoretical approach". Journal of Physics A: Mathematical and General. 39 (24): R207–R313. doi:10.1088/0305-4470/39/24/r01. ISSN   0305-4470.
  6. Christensen, Kim; Moloney, Nicholas R. (2005). Complexity and Criticality. Imperial College Press. pp. Chapter 3. ISBN   1-86094-504-X.
  7. W. Weidlich, Sociodynamics, reprinted by Dover Publications, London 2006, ISBN   0-486-45027-9