Phase Transitions and Critical Phenomena

Last updated

Contents

Footnotes

  1. 1 2 "Acclaimed Physicist Cyril Domb, 91, Bridged Religion and Science" . Retrieved 2013-05-10.
  2. Phase transitions and critical phenomena. CiNii. 1972. Retrieved 2013-05-10.
  3. Lee, E W (1973). "Phase Transitions and Critical Phenomena Vol 1 Exact Results". Physics Bulletin. 24 (8). IOP Publishing: 493. doi:10.1088/0031-9112/24/8/022. ISSN   0031-9112.
  4. Rae, A. I. M. (1973-07-01). "Phase transitions and critical phenomenaedited by C. Domb and M. S. Green". Acta Crystallographica Section A. 29 (4). International Union of Crystallography (IUCr): 487. Bibcode:1973AcCrA..29..487R. doi: 10.1107/s056773947300121x . ISSN   0567-7394.
  5. Gray, P (1973). "Phase Transitions and Critical Phenomena Vol 2". Physics Bulletin. 24 (5). IOP Publishing: 306. doi:10.1088/0031-9112/24/5/042. ISSN   0031-9112.
  6. 森垣, 和夫 (1976), "C. Domb and M.S. Green 編 : Phase Transitions and Critical Phenomena, Vol. 3; Series Expansions for Lattice Models, Academic Press, London and New York, 1974, xviii+694ページ, 23.5×15.5cm, £18.00.", 日本物理学会誌 (Nihon Butsuri Gakkaishi) (in Japanese), 31 (5), 日本物理学会: 387–389, doi:10.11316/butsuri1946.31.5.387_2, ISSN   0029-0181

Related Research Articles

<span class="mw-page-title-main">Phase transition</span> Physical process of transition between basic states of matter

In physics, chemistry, and other related fields like biology, a phase transition is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure. This can be a discontinuous change; for example, a liquid may become gas upon heating to its boiling point, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point.

This is a timeline of states of matter and phase transitions, specifically discoveries related to either of these topics.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

<span class="mw-page-title-main">Percolation</span> Filtration of fluids through porous materials

In physics, chemistry, and materials science, percolation refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation.

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale-invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.

In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities described by critical exponents, universality, fractal behaviour, and ergodicity breaking. Critical phenomena take place in second order phase transitions, although not exclusively.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

<span class="mw-page-title-main">Lambda point</span>

The lambda point is the temperature at which normal fluid helium makes the transition to superfluid helium II. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II triple point at 2.1768 K (−270.9732 °C) and 5.0418 kPa (0.049759 atm), which is the "saturated vapor pressure" at that temperature. The highest pressure at which He-I and He-II can coexist is the bcc−He-I−He-II triple point with a helium solid at 1.762 K (−271.388 °C), 29.725 atm (3,011.9 kPa).

<span class="mw-page-title-main">Correlation function (statistical mechanics)</span> Measure of a systems order

In statistical mechanics, the correlation function is a measure of the order in a system, as characterized by a mathematical correlation function. Correlation functions describe how microscopic variables, such as spin and density, at different positions are related. More specifically, correlation functions measure quantitatively the extent to which microscopic variables fluctuate together, on average, across space and/or time. Keep in mind that correlation doesn’t automatically equate to causation. So, even if there’s a non-zero correlation between two points in space or time, it doesn’t mean there is a direct causal link between them. Sometimes, a correlation can exist without any causal relationship. This could be purely coincidental or due to other underlying factors, known as confounding variables, which cause both points to covary (statistically).

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems at thermal equilibrium, the critical exponents depend only on:

Cyril Domb FRS was a British-Israeli theoretical physicist, best known for his lecturing and writing on the theory of phase transitions and critical phenomena of fluids. He was also known in the Orthodox Jewish world for his writings on science and Judaism.

In statistical physics, directed percolation (DP) refers to a class of models that mimic filtering of fluids through porous materials along a given direction, due to the effect of gravity. Varying the microscopic connectivity of the pores, these models display a phase transition from a macroscopically permeable (percolating) to an impermeable (non-percolating) state. Directed percolation is also used as a simple model for epidemic spreading with a transition between survival and extinction of the disease depending on the infection rate.

Lattice density functional theory (LDFT) is a statistical theory used in physics and thermodynamics to model a variety of physical phenomena with simple lattice equations.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

Percolation surface critical behavior concerns the influence of surfaces on the critical behavior of percolation.

Shang-keng Ma was a Chinese theoretical physicist, known for his work on the theory of critical phenomena and random systems. He is known as the co-author with Bertrand Halperin and Pierre Hohenberg of a 1972 paper that "generalized the renormalization group theory to dynamical critical phenomena." Ma is also known as the co-author with Yoseph Imry of a 1975 paper and with Amnon Aharony and Imry of a 1976 paper that established the foundation of the random field Ising model (RFIM)

Michael Schick is a physicist and an academic. He is a professor emeritus at the University of Washington.