David Robert Nelson | |
---|---|
Born | Stuttgart, West Germany | May 9, 1951
Nationality | American |
Alma mater | Cornell University, A.B., M.S., Ph.D. |
Occupation | physicist |
David R. Nelson (born May 9, 1951) is an American physicist, [1] and Arthur K. Solomon Professor of Biophysics, at Harvard University. [2]
David R. Nelson is currently the Arthur K. Solomon Professor of Biophysics and Professor of Physics and Applied Physics at Harvard University. He graduated from Cornell University Summa cum laude with a double major in physics and mathematics in 1972, and received an M.S. in theoretical physics in 1974, and a Ph.D. in theoretical physics in January, 1975. He was in the fourth and final class of Cornell's short-lived "Six-year Ph.D. program". [3] He then became a Junior Fellow in the Harvard Society of Fellows.
Since 1978 he has been a professor at Harvard University. His research is in the fields of both hard and soft theoretical condensed matter physics, and of physical biology. His condensed matter research has focused on collective effects in the physics and chemistry of condensed matter and on spatial population genetics. He has been interested, in particular, in the interplay between fluctuations, geometry and statistical dynamics in condensed matter systems such as magnets, superfluids, liquid crystals, superconductors, polymers, turbulent fluids and metallic glasses. Nelson also has a strong interest in biological problems such as single molecule biophysics, population dynamics in inhomogeneous media, the buckling of viral shells and the effects of selective advantages, mutations, antagonism and cooperation on the spatial population genetics of microorganisms such as bacteria and yeast on both solid and liquid substrates.
With his colleague, Bertrand Halperin, he is responsible for a theory of two-dimensional melting that predicted a fourth "hexatic" phase of matter, interposed between the usual solid and liquid phases. A variety of predictions associated with this two-state freezing process have now been confirmed in experiments on two-dimensional colloidal assemblies, thin films and bulk smectic liquid crystals. Nelson's research also includes a theory of the structure and statistical mechanics of metallic glasses and investigations of "tethered surfaces,” which are two-dimensional generalizations of linear polymer chains. Flexural phonons lead a remarkable low temperature flat phase in these fishnet-like structures, with predictions of strongly scale-dependent elastic constants such as the two-dimensional Young's modulus and the bending rigidity of atomically or molecularly thin materials such as a free-standing sheets of graphene and MoS2.
Nelson has also studied flux line entanglement in the high temperature superconductors. At high magnetic fields, thermal fluctuations cause regular arrays of flux lines to melt into a tangled spaghetti state. The physics of this melted flux liquid resembles that of a directed polymer melt, and has important implications for both electrical transport and vortex pinning for many of the proposed applications of these new materials in strong magnetic fields. David Nelson's recent investigations have focused on problems that bridge the gap between the physical and biological sciences, including dislocation dynamics in bacterial cell walls, range expansions and genetic demixing in microorganisms and localization in asymmetric sparse neural networks. Additional recent interests include the non-Hermitian transfer matrices that describe thermally excited vortices with columnar pins in Type II superconductors, the effect of perforations, cuts and other defects on atomically thin cantilevers at finite temperatures and topological defects on curved surfaces.
PLATO is a suite of programs for electronic structure calculations. It receives its name from the choice of basis set used to expand the electronic wavefunctions.
The λ (lambda) universality class is a group in condensed matter physics. It regroups several systems possessing strong analogies, namely, superfluids, superconductors and smectics. All these systems are expected to belong to the same universality class for the thermodynamic critical properties of the phase transition. While these systems are quite different at the first glance, they all are described by similar formalisms and their typical phase diagrams are identical.
Édouard Brézin is a French theoretical physicist. He is professor at Université Paris 6, working at the laboratory for theoretical physics (LPT) of the École Normale Supérieure since 1986.
The superconductor–insulator transition is an example of a quantum phase transition, whereupon tuning some parameter in the Hamiltonian, a dramatic change in the behavior of the electrons occurs. The nature of how this transition occurs is disputed, and many studies seek to understand how the order parameter, , changes. Here is the amplitude of the order parameter, and is the phase. Most theories involve either the destruction of the amplitude of the order parameter - by a reduction in the density of states at the Fermi surface, or by destruction of the phase coherence; which results from the proliferation of vortices.
Jozef T. Devreese was a Belgian scientist, with a long career in condensed matter physics. He was professor emeritus of theoretical physics at the University of Antwerp. He died on November 1, 2023.
Marvin Lou Cohen is an American–Canadian theoretical physicist. He is a physics professor at the University of California, Berkeley. Cohen is a leading expert in the field of condensed matter physics. He is widely known for his seminal work on the electronic structure of solids.
Volker Heine FRS is a New Zealand / British physicist. He is married to Daphne and they have three children. Volker Heine is considered a pioneer of theoretical and computational studies of the electronic structure of solids and liquids and the determination of physical properties derived from it.
Steven R. White is a professor of physics at the University of California, Irvine. He is a condensed matter physicist who specializes in the simulation of quantum systems. He graduated from the University of California, San Diego; he then received his Ph.D. at Cornell University, where he was a shared student with Kenneth Wilson and John Wilkins.
Quantum dimer models were introduced to model the physics of resonating valence bond (RVB) states in lattice spin systems. The only degrees of freedom retained from the motivating spin systems are the valence bonds, represented as dimers which live on the lattice bonds. In typical dimer models, the dimers do not overlap.
In crystallography, a disclination is a line defect in which rotational symmetry is violated. In analogy with dislocations in crystals, the term, disinclination, for liquid crystals first used by Frederick Charles Frank and since then has been modified to its current usage, disclination. It is a defect in the orientation of director whereas a dislocation is a defect in positional order.
Patrick A. Lee is a professor of physics at the Massachusetts Institute of Technology (MIT).
The hexatic phase is a state of matter that is between the solid and the isotropic liquid phases in two dimensional systems of particles. It is characterized by two order parameters: a short-range positional and a quasi-long-range orientational (sixfold) order. More generally, a hexatic is any phase that contains sixfold orientational order, in analogy with the nematic phase.
Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.
David Matthew Ceperley is a theoretical physicist in the physics department at the University of Illinois Urbana-Champaign or UIUC. He is a world expert in the area of Quantum Monte Carlo computations, a method of calculation that is generally recognised to provide accurate quantitative results for many-body problems described by quantum mechanics.
Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018, and was elected Foreign Member of the Royal Society ForMemRS in 2023. He was a co-editor of the Annual Review of Condensed Matter Physics 2017–2019, and is Editor-in-Chief of Reports on Progress in Physics 2022-.
Scissors Modes are collective excitations in which two particle systems move with respect to each other conserving their shape. For the first time they were predicted to occur in deformed atomic nuclei by N. LoIudice and F. Palumbo, who used a semiclassical Two Rotor Model, whose solution required a realization of the O(4) algebra that was not known in mathematics. In this model protons and neutrons were assumed to form two interacting rotors to be identified with the blades of scissors. Their relative motion (Fig.1) generates a magnetic dipole moment whose coupling with the electromagnetic field provides the signature of the mode.
Jochen Mannhart is a German physicist.
Boris Ionovich Shklovskii is a theoretical physicist, at the William I Fine Theoretical Physics Institute, University of Minnesota, specializing in condensed matter. Shklovskii earned his A.B. degree in Physics, in 1966 and a Ph.D. in condensed matter theory, in 1968 from Leningrad University.
Nai Phuan Ong is an American experimental physicist, specializing in "condensed matter physics focusing on topological insulators, Dirac/Weyl semimetals, superconductors and quantum spin liquids."
Leo Radzihovsky is a Russian American condensed matter physicist and academic serving as a professor of Distinction in Physics at the University of Colorado Boulder.