Correlation function (statistical mechanics)

Last updated
Schematic equal-time spin correlation functions for ferromagnetic and antiferromagnetic materials both above and below
T
Curie
{\displaystyle T_{\text{Curie}}}
versus the distance normalized by the correlation length,
x
{\displaystyle \xi }
. In all cases, correlations are strongest nearest to the origin, indicating that a spin has the strongest influence on its nearest neighbors. All correlations gradually decay as the distance from the spin at the origin increases. Above the Curie temperature, the correlation between spins tends to zero as the distance between the spins gets very large. In contrast, below
T
Curie
{\displaystyle T_{\text{Curie}}}
, the correlation between the spins does not tend toward zero at large distances, but instead decays to a level consistent with the long-range order of the system. The difference in these decay behaviors, where correlations between microscopic random variables become zero versus non-zero at large distances, is one way of defining short- versus long-range order. Ferro antiferro spatial corrs png.png
Schematic equal-time spin correlation functions for ferromagnetic and antiferromagnetic materials both above and below versus the distance normalized by the correlation length, . In all cases, correlations are strongest nearest to the origin, indicating that a spin has the strongest influence on its nearest neighbors. All correlations gradually decay as the distance from the spin at the origin increases. Above the Curie temperature, the correlation between spins tends to zero as the distance between the spins gets very large. In contrast, below , the correlation between the spins does not tend toward zero at large distances, but instead decays to a level consistent with the long-range order of the system. The difference in these decay behaviors, where correlations between microscopic random variables become zero versus non-zero at large distances, is one way of defining short- versus long-range order.

In statistical mechanics, the correlation function is a measure of the order in a system, as characterized by a mathematical correlation function. Correlation functions describe how microscopic variables, such as spin and density, at different positions are related. More specifically, correlation functions measure quantitatively the extent to which microscopic variables fluctuate together, on average, across space and/or time. Keep in mind that correlation doesn’t automatically equate to causation. So, even if there’s a non-zero correlation between two points in space or time, it doesn’t mean there is a direct causal link between them. Sometimes, a correlation can exist without any causal relationship. This could be purely coincidental or due to other underlying factors, known as confounding variables, which cause both points to covary (statistically).

Contents

A classic example of spatial correlation can be seen in ferromagnetic and antiferromagnetic materials. In these materials, atomic spins tend to align in parallel and antiparallel configurations with their adjacent counterparts, respectively. The figure on the right visually represents this spatial correlation between spins in such materials.

Definitions

The most common definition of a correlation function is the canonical ensemble (thermal) average of the scalar product of two random variables, and , at positions and and times and :

Here the brackets, , indicate the above-mentioned thermal average. It is important to note here, however, that while the brackets are called an average, they are calculated as an expected value, not an average value. It is a matter of convention whether one subtracts the uncorrelated average product of and , from the correlated product, , with the convention differing among fields. The most common uses of correlation functions are when and describe the same variable, such as a spin-spin correlation function, or a particle position-position correlation function in an elemental liquid or a solid (often called a Radial distribution function or a pair correlation function). Correlation functions between the same random variable are autocorrelation functions. However, in statistical mechanics, not all correlation functions are autocorrelation functions. For example, in multicomponent condensed phases, the pair correlation function between different elements is often of interest. Such mixed-element pair correlation functions are an example of cross-correlation functions, as the random variables and represent the average variations in density as a function position for two distinct elements.

Equilibrium equal-time (spatial) correlation functions

Often, one is interested in solely the spatial influence of a given random variable, say the direction of a spin, on its local environment, without considering later times, . In this case, we neglect the time evolution of the system, so the above definition is re-written with . This defines the equal-time correlation function, . It is written as:

Often, one omits the reference time, , and reference radius, , by assuming equilibrium (and thus time invariance of the ensemble) and averaging over all sample positions, yielding: where, again, the choice of whether to subtract the uncorrelated variables differs among fields. The Radial distribution function is an example of an equal-time correlation function where the uncorrelated reference is generally not subtracted. Other equal-time spin-spin correlation functions are shown on this page for a variety of materials and conditions.

Equilibrium equal-position (temporal) correlation functions

One might also be interested in the temporal evolution of microscopic variables. In other words, how the value of a microscopic variable at a given position and time, and , influences the value of the same microscopic variable at a later time, (and usually at the same position). Such temporal correlations are quantified via equal-position correlation functions, . They are defined analogously to above equal-time correlation functions, but we now neglect spatial dependencies by setting , yielding:

Assuming equilibrium (and thus time invariance of the ensemble) and averaging over all sites in the sample gives a simpler expression for the equal-position correlation function as for the equal-time correlation function:

The above assumption may seem non-intuitive at first: how can an ensemble which is time-invariant have a non-uniform temporal correlation function? Temporal correlations remain relevant to talk about in equilibrium systems because a time-invariant, macroscopic ensemble can still have non-trivial temporal dynamics microscopically. One example is in diffusion. A single-phase system at equilibrium has a homogeneous composition macroscopically. However, if one watches the microscopic movement of each atom, fluctuations in composition are constantly occurring due to the quasi-random walks taken by the individual atoms. Statistical mechanics allows one to make insightful statements about the temporal behavior of such fluctuations of equilibrium systems. This is discussed below in the section on the temporal evolution of correlation functions and Onsager's regression hypothesis.

Time correlation function

Time correlation function plays a significant role in nonequilibrium statistical mechanics as partition function does in equilibrium statistical mechancis. [1] For instance, transport coefficients [2] are closely related to time correlation functions through the Fourier transform; and the Green-Kubo relations, [3] used to calculate relaxation and dissipation processes in a system, are expressed in terms of equilibrium time correlation functions. The time correlation function of two observable and is defined as, [4] and this definition applies for both classical and quantum version. For stationary (equilibrium) system, the time origin is irrelevant, and , with as the time difference.

The explicit expression of classical time correlation function is, where is the value of at time , is the value of at time given the initial state , and is the phase space distribution function for the initial state. If the ergodicity is assumed, then the ensemble average is the same as time average in a long time; mathematically, scanning different time window gives the time correlation function. As , the correlation function , while as , we may assume the correlation vanishes and .

Correspondingly, the quantum time correlation function is, in the canonical ensemble, [4] where and are the quantum operator, and in the Heisenberg picture. If evaluating the (non-symmetrized) quantum time correlation function by expanding the trace to the eigenstates, Evaluating quantum time correlation function quantum mechanically is very expensive, and this cannot be applied to a large system with many degrees of freedom. Nevertheless, semiclassical initial value representation (SC-IVR) [5] is a family to evaluate the quantum time correlation function from the definition.

Additionally, there are two alternative quantum time correlations, [6] and they both related to the definition of quantum time correlation function in the Fourier space. The first symmetrized correlation function is defined by, with as a complex time variable. is related with the definition of quantum time correlation function by, The second symmetrized (Kubo transformed) correlation function is, and reduces to its classical counterpart both in the high temperature and harmonic limit. is related with the definition of quantum time correlation function by, The symmetrized quantum time correlation function are easier to evaluate, and the Fourier transformed relation makes them applicable in calculating spectrum, transport coefficients, etc. Quantum time correlation function can be approximated using the path integral molecular dynamics.

Generalization beyond equilibrium correlation functions

All of the above correlation functions have been defined in the context of equilibrium statistical mechanics. However, it is possible to define correlation functions for systems away from equilibrium. Examining the general definition of , it is clear that one can define the random variables used in these correlation functions, such as atomic positions and spins, away from equilibrium. As such, their scalar product is well-defined away from equilibrium. The operation which is no longer well-defined away from equilibrium is the average over the equilibrium ensemble. This averaging process for non-equilibrium system is typically replaced by averaging the scalar product across the entire sample. This is typical in scattering experiments and computer simulations, and is often used to measure the radial distribution functions of glasses.

One can also define averages over states for systems perturbed slightly from equilibrium. See, for example, http://xbeams.chem.yale.edu/~batista/vaa/node56.html Archived 2018-12-25 at the Wayback Machine

Measuring correlation functions

Correlation functions are typically measured with scattering experiments. For example, x-ray scattering experiments directly measure electron-electron equal-time correlations. [7] From knowledge of elemental structure factors, one can also measure elemental pair correlation functions. See Radial distribution function for further information. Equal-time spin–spin correlation functions are measured with neutron scattering as opposed to x-ray scattering. Neutron scattering can also yield information on pair correlations as well. For systems composed of particles larger than about one micrometer, optical microscopy can be used to measure both equal-time and equal-position correlation functions. Optical microscopy is thus common for colloidal suspensions, especially in two dimensions.

Time evolution of correlation functions

In 1931, Lars Onsager proposed that the regression of microscopic thermal fluctuations at equilibrium follows the macroscopic law of relaxation of small non-equilibrium disturbances. [8] This is known as the Onsager regression hypothesis . As the values of microscopic variables separated by large timescales, , should be uncorrelated beyond what we would expect from thermodynamic equilibrium, the evolution in time of a correlation function can be viewed from a physical standpoint as the system gradually 'forgetting' the initial conditions placed upon it via the specification of some microscopic variable. There is actually an intuitive connection between the time evolution of correlation functions and the time evolution of macroscopic systems: on average, the correlation function evolves in time in the same manner as if a system was prepared in the conditions specified by the correlation function's initial value and allowed to evolve. [7]

Equilibrium fluctuations of the system can be related to its response to external perturbations via the Fluctuation-dissipation theorem.

The connection between phase transitions and correlation functions

Equal-time correlation functions,
C
(
r
,
t
=
0
)
{\displaystyle C(r,\tau =0)}
, as a function of radius for a ferromagnetic spin system above, at, and below at its critical temperature,
T
C
{\displaystyle T_{C}}
. Above
T
C
{\displaystyle T_{C}}
,
C
(
r
,
t
=
0
)
{\displaystyle C(r,\tau =0)}
exhibits a combined exponential and power-law dependence on distance:
C
(
r
,
t
=
0
)
[?]
r
-
th
e
-
r
/
x
(
T
)
{\displaystyle C(r,\tau =0)\propto r^{-\vartheta }e^{-r/\xi (T)}}
. The power-law dependence dominates at distances short relative to the correlation length,
x
{\displaystyle \xi }
, while the exponential dependence dominates at distances large relative to
x
{\displaystyle \xi }
. At
T
C
{\displaystyle T_{C}}
, the correlation length diverges,
x
(
T
C
)
=
[?]
{\displaystyle \xi (T_{C})=\infty }
, resulting in solely power-law behavior:
C
(
r
,
t
=
0
)
[?]
r
-
(
d
-
2
+
e
)
{\displaystyle C(r,\tau =0)\propto r^{-(d-2+\eta )}}
.
T
C
{\displaystyle T_{C}}
is distinguished by the extreme non-locality of the spatial correlations between microscopic values of the relevant order parameter without long-range order. Below
T
C
{\displaystyle T_{C}}
, the spins exhibit spontaneous ordering, i.e. long-range order, and infinite correlation length. Continuous order-disorder transitions can be understood as the process of the correlation length,
x
{\displaystyle \xi }
, transitioning from being infinite in the low-temperature, ordered state, to infinite at the critical point, and then finite in a high-temperature, disordered state. Ferromagnetic correlation functions around Tc.svg
Equal-time correlation functions, , as a function of radius for a ferromagnetic spin system above, at, and below at its critical temperature, . Above , exhibits a combined exponential and power-law dependence on distance: . The power-law dependence dominates at distances short relative to the correlation length, , while the exponential dependence dominates at distances large relative to . At , the correlation length diverges, , resulting in solely power-law behavior: . is distinguished by the extreme non-locality of the spatial correlations between microscopic values of the relevant order parameter without long-range order. Below , the spins exhibit spontaneous ordering, i.e. long-range order, and infinite correlation length. Continuous order-disorder transitions can be understood as the process of the correlation length, , transitioning from being infinite in the low-temperature, ordered state, to infinite at the critical point, and then finite in a high-temperature, disordered state.

Continuous phase transitions, such as order-disorder transitions in metallic alloys and ferromagnetic-paramagnetic transitions, involve a transition from an ordered to a disordered state. In terms of correlation functions, the equal-time correlation function is non-zero for all lattice points below the critical temperature, and is non-negligible for only a fairly small radius above the critical temperature. As the phase transition is continuous, the length over which the microscopic variables are correlated, , must transition continuously from being infinite to finite when the material is heated through its critical temperature. This gives rise to a power-law dependence of the correlation function as a function of distance at the critical point. This is shown in the figure in the left for the case of a ferromagnetic material, with the quantitative details listed in the section on magnetism.

Applications

Magnetism

In a spin system, the equal-time correlation function is especially well-studied. It describes the canonical ensemble (thermal) average of the scalar product of the spins at two lattice points over all possible orderings: Here the brackets mean the above-mentioned thermal average. Schematic plots of this function are shown for a ferromagnetic material below, at, and above its Curie temperature on the left.

Even in a magnetically disordered phase, spins at different positions are correlated, i.e., if the distance r is very small (compared to some length scale ), the interaction between the spins will cause them to be correlated. The alignment that would naturally arise as a result of the interaction between spins is destroyed by thermal effects. At high temperatures exponentially-decaying correlations are observed with increasing distance, with the correlation function being given asymptotically by

where r is the distance between spins, and d is the dimension of the system, and is an exponent, whose value depends on whether the system is in the disordered phase (i.e. above the critical point), or in the ordered phase (i.e. below the critical point). At high temperatures, the correlation decays to zero exponentially with the distance between the spins. The same exponential decay as a function of radial distance is also observed below , but with the limit at large distances being the mean magnetization . Precisely at the critical point, an algebraic behavior is seen

where is a critical exponent, which does not have any simple relation with the non-critical exponent introduced above. For example, the exact solution of the two-dimensional Ising model (with short-ranged ferromagnetic interactions) gives precisely at criticality , but above criticality and below criticality . [9] [10]

As the temperature is lowered, thermal disordering is lowered, and in a continuous phase transition the correlation length diverges, as the correlation length must transition continuously from a finite value above the phase transition, to infinite below the phase transition:

with another critical exponent .

This power law correlation is responsible for the scaling, seen in these transitions. All exponents mentioned are independent of temperature. They are in fact universal, i.e. found to be the same in a wide variety of systems.

Radial distribution functions

One common correlation function is the radial distribution function which is seen often in statistical mechanics and fluid mechanics. The correlation function can be calculated in exactly solvable models (one-dimensional Bose gas, spin chains, Hubbard model) by means of Quantum inverse scattering method and Bethe ansatz. In an isotropic XY model, time and temperature correlations were evaluated by Its, Korepin, Izergin & Slavnov. [11]

Higher order correlation functions

Higher-order correlation functions involve multiple reference points, and are defined through a generalization of the above correlation function by taking the expected value of the product of more than two random variables:

However, such higher order correlation functions are relatively difficult to interpret and measure. For example, in order to measure the higher-order analogues of pair distribution functions, coherent x-ray sources are needed. Both the theory of such analysis [12] [13] and the experimental measurement of the needed X-ray cross-correlation functions [14] are areas of active research.

See also

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense fervent in the development of quantum mechanics.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals - that is, functions that accept a function as input and output a single real number. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative is used instead of a total derivative since the wave function is also a function of time. The "hat" indicates an operator. The "application" of the operator on a differentiable wave function is as follows:

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

The cluster-expansion approach is a technique in quantum mechanics that systematically truncates the BBGKY hierarchy problem that arises when quantum dynamics of interacting systems is solved. This method is well suited for producing a closed set of numerically computable equations that can be applied to analyze a great variety of many-body and/or quantum-optical problems. For example, it is widely applied in semiconductor quantum optics and it can be applied to generalize the semiconductor Bloch equations and semiconductor luminescence equations.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

In quantum optics, correlation functions are used to characterize the statistical and coherence properties – the ability of waves to interfere – of electromagnetic radiation, like optical light. Higher order coherence or n-th order coherence extends the concept of coherence to quantum optics and coincidence experiments. It is used to differentiate between optics experiments that require a quantum mechanical description from those for which classical fields are sufficient.

References

  1. McQuarrie, Donald A. (2000). Statistical Mechanics. University Science Books. ISBN   978-1891389153.
  2. Zwanzig, Robert (1965). "Time-Correlation Functions and Transport Coefficients in Statistical Mechanics". Annual Review of Physical Chemistry. 16: 67–102. doi:10.1146/annurev.pc.16.100165.000435.
  3. Zwanzig, Robert (2001). Nonequilibrium Statistical Mechanics. ISBN   978-0195140187.
  4. 1 2 Nitzen, Abraham (2014). Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems. ISBN   978-0199686681.
  5. Miller, William H (2001). "The Semiclassical Initial Value Representation:  A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations". Journal of Physical Chemistry A. 105 (13): 2942–2955. doi:10.1021/jp003712k.
  6. Tuckerman, Mark E. (2023). Statistical Mechanics: Theory and Molecular Simulation. Oxford Graduate Texts. ISBN   978-0198825562.
  7. 1 2 Sethna, James P. (2006). "Chapter 10: Correlations, response, and dissipation". Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press. ISBN   978-0198566779.
  8. Onsager, Lars (1931). "Reciprocal Relations in Irreversible Processes. I." Physical Review. 38 (405): 2265–2279. Bibcode:1931PhRv...37..405O. doi: 10.1103/PhysRev.37.405 .
  9. B.M. McCoy and T.T. Wu (1973) The Two-dimensional Ising Model, Harvard University Press
  10. M. Henkel (1999) Conformal Invariance and Critical Phenomena, Springer (Heidelberg)
  11. A.R. Its, V.e. Korepin, A.G. Izergin & N.A. Slavnov (2009) Temperature Correlation of Quantum Spins from arxiv.org.
  12. Altarelli, M.; Kurta, R. P.; Vartanyants, I. A. (2010). "X-ray cross-correlation analysis and local symmetries of disordered systems: General theory". Physical Review B. 82 (10): 104207. arXiv: 1006.5382 . Bibcode:2010PhRvB..82j4207A. doi:10.1103/PhysRevB.82.104207. S2CID   119243898.
  13. Lehmkühler, F.; Grübel, G.; Gutt, C. (2014). "Detecting orientational order in model systems by X-ray cross-correlation methods". Journal of Applied Crystallography. 47 (4): 1315. arXiv: 1402.1432 . doi:10.1107/S1600576714012424. S2CID   97097937.
  14. Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A. D.; Duri, A.; Zontone, F.; Grubel, G.; Dosch, H. (2009). "X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter". Proceedings of the National Academy of Sciences. 106 (28): 11511–4. Bibcode:2009PNAS..10611511W. doi: 10.1073/pnas.0905337106 . PMC   2703671 . PMID   20716512.

Further reading