Bethe ansatz

Last updated

In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model. [1]

Contents

Since then the method has been extended to other spin chains and statistical lattice models.

"Bethe ansatz problems" were one of the topics featuring in the "To learn" section of Richard Feynman's blackboard at the time of his death. [2]

Discussion

In the framework of many-body quantum mechanics, models solvable by the Bethe ansatz can be contrasted with free fermion models. One can say that the dynamics of a free model is one-body reducible: the many-body wave function for fermions (bosons) is the anti-symmetrized (symmetrized) product of one-body wave functions. Models solvable by the Bethe ansatz are not free: the two-body sector has a non-trivial scattering matrix, which in general depends on the momenta.

On the other hand, the dynamics of the models solvable by the Bethe ansatz is two-body reducible: the many-body scattering matrix is a product of two-body scattering matrices. Many-body collisions happen as a sequence of two-body collisions and the many-body wave function can be represented in a form which contains only elements from two-body wave functions. The many-body scattering matrix is equal to the product of pairwise scattering matrices.

The generic form of the (coordinate) Bethe ansatz for a many-body wavefunction is

in which is the number of particles, their position, is the set of all permutations of the integers , is the parity of the permutation taking values either positive or negative one, is the (quasi-)momentum of the -th particle, is the scattering phase shift function and is the sign function. This form is universal (at least for non-nested systems), with the momentum and scattering functions being model-dependent.

The Yang–Baxter equation guarantees consistency of the construction. The Pauli exclusion principle is valid for models solvable by the Bethe ansatz, even for models of interacting bosons.

The ground state is a Fermi sphere. Periodic boundary conditions lead to the Bethe ansatz equations or simply Bethe equations. In logarithmic form the Bethe ansatz equations can be generated by the Yang action. The square of the norm of Bethe wave function is equal to the determinant of the Hessian of the Yang action. [3]

A substantial generalization is the quantum inverse scattering method, or algebraic Bethe ansatz, which gives an ansatz for the underlying operator algebra that "has allowed a wide class of nonlinear evolution equations to be solved." [4]

The exact solutions of the so-called s-d model (by P.B. Wiegmann [5] in 1980 and independently by N. Andrei, [6] also in 1980) and the Anderson model (by P.B. Wiegmann [7] in 1981, and by N. Kawakami and A. Okiji [8] in 1981) are also both based on the Bethe ansatz. There exist multi-channel generalizations of these two models also amenable to exact solutions (by N. Andrei and C. Destri [9] and by C.J. Bolech and N. Andrei [10] ). Recently several models solvable by Bethe ansatz were realized experimentally in solid states and optical lattices. An important role in the theoretical description of these experiments was played by Jean-Sébastien Caux and Alexei Tsvelik.[ citation needed ]

Terminology

There are many similar methods which come under the name of Bethe ansatz

Examples

Heisenberg antiferromagnetic chain

The Heisenberg antiferromagnetic chain is defined by the Hamiltonian (assuming periodic boundary conditions)

This model is solvable using the (coordinate) Bethe ansatz. The scattering phase shift function is , with in which the momentum has been conveniently reparametrized as in terms of the rapidity The (here, periodic) boundary conditions impose the Bethe equations

or more conveniently in logarithmic form

where the quantum numbers are distinct half-odd integers for even, integers for odd (with defined mod).

Applicability

The following systems can be solved using the Bethe ansatz

Chronology

Related Research Articles

<span class="mw-page-title-main">Luttinger liquid</span> Theoretical model describing interacting fermions in a one-dimensional conductor

A Luttinger liquid, or Tomonaga–Luttinger liquid, is a theoretical model describing interacting electrons in a one-dimensional conductor. Such a model is necessary as the commonly used Fermi liquid model breaks down for one dimension.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

<i>t</i>-<i>J</i> model

In solid-state physics, the t-J model is a model first derived by Józef Spałek to explain antiferromagnetic properties of Mott insulators, taking into account experimental results about the strength of electron-electron repulsion in this materials.

<span class="mw-page-title-main">Landau–Zener formula</span> Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

In statistical mechanics, the ice-type models or six-vertex models are a family of vertex models for crystal lattices with hydrogen bonds. The first such model was introduced by Linus Pauling in 1935 to account for the residual entropy of water ice. Variants have been proposed as models of certain ferroelectric and antiferroelectric crystals.

A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin models are also used in quantum information theory and computability theory in theoretical computer science. The theory of spin models is a far reaching and unifying topic that cuts across many fields.

<span class="mw-page-title-main">Vladimir Korepin</span> Russian physicist and mathematician

Vladimir E. Korepin is a professor at the C. N. Yang Institute of Theoretical Physics of the Stony Brook University. Korepin made research contributions in several areas of mathematics and physics.

In quantum physics, the quantum inverse scattering method (QISM) or the algebraic Bethe ansatz is a method for solving integrable models in 1+1 dimensions, introduced by Leon Takhtajan and L. D. Faddeev in 1979.

<span class="mw-page-title-main">Bethe–Slater curve</span>

The Bethe–Slater curve is a heuristic explanation for why certain metals are ferromagnetic and others are antiferromagnetic. It assumes a Heisenberg model of magnetism, and explains the differences in exchange energy of transition metals as due to the ratio of the interatomic distance a to the radius r of the 3d electron shell. When the magnetically important 3d electrons of adjacent atoms are relatively close to each other, the exchange interaction, , is negative, but when they are further away, the exchange interaction becomes positive, before slowly dropping off.

In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki provided crucial insight into the physics of the spin-1 Heisenberg chain. It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order and matrix product state wavefunctions.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

The Kondo model is a model for a single localized quantum impurity coupled to a large reservoir of delocalized and noninteracting electrons. The quantum impurity is represented by a spin-1/2 particle, and is coupled to a continuous band of noninteracting electrons by an antiferromagnetic exchange coupling . The Kondo model is used as a model for metals containing magnetic impurities, as well as quantum dot systems.

Alan Harold Luther is an American physicist, specializing in condensed matter physics.

A spin chain is a type of model in statistical physics. Spin chains were originally formulated to model magnetic systems, which typically consist of particles with magnetic spin located at fixed sites on a lattice. A prototypical example is the quantum Heisenberg model. Interactions between the sites are modelled by operators which act on two different sites, often neighboring sites.

<span class="mw-page-title-main">Germán Sierra</span> Spanish theoretical physicist, author, and academic

Germán Sierra is a Spanish theoretical physicist, author, and academic. He is Professor of Research at the Institute of Theoretical Physics Autonomous University of Madrid-Spanish National Research Council.

<span class="mw-page-title-main">Alexei Tsvelik</span> Theoretical physicist

Alexei Mikhaylovich Tsvelik is a theoretical condensed matter physicist working on strongly correlated electron systems. He is widely recognised for his pioneering contributions to the theory of low-dimensional systems, including the applications of quantum field theory and the Bethe Ansatz.

References

  1. 1 2 Bethe, H. (March 1931). "Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette". Zeitschrift für Physik. 71 (3–4): 205–226. doi:10.1007/BF01341708. S2CID   124225487.
  2. "Richard Feynman's blackboard at time of his death | Caltech Archives". digital.archives.caltech.edu. Retrieved 29 July 2023.
  3. Korepin, Vladimir E. (1982). "Calculation of norms of Bethe wave functions". Communications in Mathematical Physics. 86 (3): 391–418. Bibcode:1982CMaPh..86..391K. doi:10.1007/BF01212176. ISSN   0010-3616. S2CID   122250890.
  4. Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G. (1997-03-06). Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press. ISBN   9780521586467.
  5. Wiegmann, P.B. (1980). "Exact solution of s-d exchange model at T = 0" (PDF). JETP Letters. 31 (7): 364. Archived from the original (PDF) on 2019-05-17. Retrieved 2019-05-17.
  6. Andrei, N. (1980). "Diagonalization of the Kondo Hamiltonian". Physical Review Letters. 45 (5): 379–382. Bibcode:1980PhRvL..45..379A. doi:10.1103/PhysRevLett.45.379. ISSN   0031-9007.
  7. Wiegmann, P.B. (1980). "Towards an exact solution of the Anderson model". Physics Letters A. 80 (2–3): 163–167. Bibcode:1980PhLA...80..163W. doi:10.1016/0375-9601(80)90212-1. ISSN   0375-9601.
  8. Kawakami, Norio; Okiji, Ayao (1981). "Exact expression of the ground-state energy for the symmetric anderson model". Physics Letters A. 86 (9): 483–486. Bibcode:1981PhLA...86..483K. doi:10.1016/0375-9601(81)90663-0. ISSN   0375-9601.
  9. Andrei, N.; Destri, C. (1984). "Solution of the Multichannel Kondo Problem". Physical Review Letters. 52 (5): 364–367. Bibcode:1984PhRvL..52..364A. doi:10.1103/PhysRevLett.52.364. ISSN   0031-9007.
  10. Bolech, C. J.; Andrei, N. (2002). "Solution of the Two-Channel Anderson Impurity Model: Implications for the Heavy Fermion UBe13". Physical Review Letters. 88 (23): 237206. arXiv: cond-mat/0204392 . Bibcode:2002PhRvL..88w7206B. doi:10.1103/PhysRevLett.88.237206. ISSN   0031-9007. PMID   12059396. S2CID   15180985.
  11. Faddeev, Ludwig (1992). "How Algebraic Bethe Ansatz works for integrable model". arXiv: hep-th/9211111 .
  12. Sklyanin, E. K. (1985). "The quantum Toda chain". Non-Linear Equations in Classical and Quantum Field Theory. Lecture Notes in Physics. 226: 196–233. Bibcode:1985LNP...226..196S. doi:10.1007/3-540-15213-X_80. ISBN   978-3-540-15213-2.
  13. Sklyanin, E.K. (October 1990). "Functional Bethe Ansatz". Integrable and Superintegrable Systems: 8–33. doi:10.1142/9789812797179_0002. ISBN   978-981-02-0316-0.
  14. Heisenberg, W. (September 1928). "Zur Theorie des Ferromagnetismus". Zeitschrift für Physik. 49 (9–10): 619–636. Bibcode:1928ZPhy...49..619H. doi:10.1007/BF01328601. S2CID   122524239.
  15. Bloch, F. (March 1930). "Zur Theorie des Ferromagnetismus". Zeitschrift für Physik. 61 (3–4): 206–219. Bibcode:1930ZPhy...61..206B. doi:10.1007/BF01339661. S2CID   120459635.
  16. Hulthén, Lamek (1938). "Über das Austauschproblem eines Kristalles". Arkiv Mat. Astron. Fysik. 26A: 1.
  17. Orbach, R. (15 October 1958). "Linear Antiferromagnetic Chain with Anisotropic Coupling". Physical Review. 112 (2): 309–316. Bibcode:1958PhRv..112..309O. doi:10.1103/PhysRev.112.309.
  18. des Cloizeaux, Jacques; Pearson, J. J. (1 December 1962). "Spin-Wave Spectrum of the Antiferromagnetic Linear Chain". Physical Review. 128 (5): 2131–2135. Bibcode:1962PhRv..128.2131D. doi:10.1103/PhysRev.128.2131.
  19. Anderson, P. W. (1 June 1952). "An Approximate Quantum Theory of the Antiferromagnetic Ground State". Physical Review. 86 (5): 694–701. Bibcode:1952PhRv...86..694A. doi:10.1103/PhysRev.86.694.
  20. Lieb, Elliott H.; Liniger, Werner (15 May 1963). "Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State". Physical Review. 130 (4): 1605–1616. Bibcode:1963PhRv..130.1605L. doi:10.1103/PhysRev.130.1605.
  21. Lieb, Elliott H. (15 May 1963). "Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum". Physical Review. 130 (4): 1616–1624. Bibcode:1963PhRv..130.1616L. doi:10.1103/PhysRev.130.1616.
  22. Griffiths, Robert B. (3 February 1964). "Magnetization Curve at Zero Temperature for the Antiferromagnetic Heisenberg Linear Chain". Physical Review. 133 (3A): A768–A775. Bibcode:1964PhRv..133..768G. doi:10.1103/PhysRev.133.A768.
  23. Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. I. Proof of Bethe's Hypothesis for Ground State in a Finite System". Physical Review. 150 (1): 321–327. Bibcode:1966PhRv..150..321Y. doi:10.1103/PhysRev.150.321.
  24. Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System". Physical Review. 150 (1): 327–339. Bibcode:1966PhRv..150..327Y. doi:10.1103/PhysRev.150.327.
  25. Yang, C. N.; Yang, C. P. (4 November 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. III. Applications". Physical Review. 151 (1): 258–264. Bibcode:1966PhRv..151..258Y. doi:10.1103/PhysRev.151.258.
  26. Yang, C. N. (4 December 1967). "Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction". Physical Review Letters. 19 (23): 1312–1315. Bibcode:1967PhRvL..19.1312Y. doi:10.1103/PhysRevLett.19.1312.
  27. Lieb, Elliott H.; Wu, F. Y. (17 June 1968). "Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension". Physical Review Letters. 20 (25): 1445–1448. Bibcode:1968PhRvL..20.1445L. doi:10.1103/PhysRevLett.20.1445.
  28. Yang, C. N.; Yang, C. P. (July 1969). "Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction". Journal of Mathematical Physics. 10 (7): 1115–1122. Bibcode:1969JMP....10.1115Y. doi:10.1063/1.1664947.