Drude model

Last updated
Drude model electrons (shown here in blue) constantly bounce between heavier, stationary crystal ions (shown in red). Electrona in crystallo fluentia.svg
Drude model electrons (shown here in blue) constantly bounce between heavier, stationary crystal ions (shown in red).

The Drude model of electrical conduction was proposed in 1900 [1] [2] by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons (the carriers of electricity) by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

Contents

The model, which is an application of kinetic theory, assumes that the microscopic behaviour of electrons in a solid may be treated classically and behaves much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.

In modern terms this is reflected in the valence electron model where the sea of electrons is composed of the valence electrons only, [3] and not the full set of electrons available in the solid, and the scattering centers are the inner shells of tightly bound electrons to the nucleus. The scattering centers had a positive charge equivalent to the valence number of the atoms. [Ashcroft & Mermin 1] This similarity added to some computation errors in the Drude paper, ended up providing a reasonable qualitative theory of solids capable of making good predictions in certain cases and giving completely wrong results in others. Whenever people tried to give more substance and detail to the nature of the scattering centers, and the mechanics of scattering, and the meaning of the length of scattering, all these attempts ended in failures. [Ashcroft & Mermin 2]

The scattering lengths computed in the Drude model, are of the order of 10 to 100 inter-atomic distances, and also these could not be given proper microscopic explanations.

Drude scattering is not electron-electron scattering which is only a secondary phenomenon in the modern theory, neither nuclear scattering given electrons can be at most be absorbed by nuclei. The model remains a bit mute on the microscopic mechanisms, in modern terms this is what is now called the "primary scattering mechanism" where the underlying phenomenon can be different case per case. [Ashcroft & Mermin 3]

The model gives better predictions for metals, especially in regards to conductivity, [Ashcroft & Mermin 4] and sometimes is called Drude theory of metals. This is because metals have essentially a better approximation to the free electron model, i.e. metals do not have complex band structures, electrons behave essentially as free particles and where, in the case of metals, the effective number of de-localized electrons is essentially the same as the valence number. [Ashcroft & Mermin 5]

The two most significant results of the Drude model are an electronic equation of motion,

and a linear relationship between current density J and electric field E,

Here t is the time, ⟨p⟩ is the average momentum per electron and q, n, m, and τ are respectively the electron charge, number density, mass, and mean free time between ionic collisions. The latter expression is particularly important because it explains in semi-quantitative terms why Ohm's law, one of the most ubiquitous relationships in all of electromagnetism, should hold. [Ashcroft & Mermin 6] [4] [5]

Steps towards a more modern theory of solids were given by the following:

Drude used Maxwell–Boltzmann statistics for the gas of electrons and for deriving the model, which was the only one available at that time. By replacing the statistics with the correct Fermi Dirac statistics, Sommerfeld significantly improved the predictions of the model, although still having a semi-classical theory that could not predict all results of the modern quantum theory of solids. [Ashcroft & Mermin 8]

History

German physicist Paul Drude proposed his model in 1900 when it was not clear whether atoms existed, and it was not clear what atoms were on a microscopic scale. [6] In his original paper, Drude made an error, estimating the Lorenz number of Wiedemann–Franz law to be twice what it classically should have been, thus making it seem in agreement with the experimental value of the specific heat. This number is about 100 times smaller than the classical prediction but this factor cancels out with the mean electronic speed that is about 100 times bigger than Drude's calculation. [Ashcroft & Mermin 9]

The first direct proof of atoms through the computation of the Avogadro number from a microscopic model is due to Albert Einstein, the first modern model of atom structure dates to 1904 and the Rutherford model to 1909. Drude starts from the discovery of electrons in 1897 by J.J. Thomson and assumes as a simplistic model of solids that the bulk of the solid is composed of positively charged scattering centers, and a sea of electrons submerge those scattering centers to make the total solid neutral from a charge perspective. [Ashcroft & Mermin 10] The model was extended in 1905 by Hendrik Antoon Lorentz (and hence is also known as the Drude–Lorentz model) [7] to give the relation between the thermal conductivity and the electric conductivity of metals (see Lorenz number), and is a classical model. Later it was supplemented with the results of quantum theory in 1933 by Arnold Sommerfeld and Hans Bethe, leading to the Drude–Sommerfeld model.

Nowadays the Drude and Sommerfeld models are still significant to understanding the qualitative behaviour of solids and to get a first qualitative understanding of a specific experimental setup. [Ashcroft & Mermin 11] This is a generic method in solid state physics, where it is typical to incrementally increase the complexity of the models to give more and more accurate predictions. It is less common to use a full-blown quantum field theory from first principles, given the complexities due to the huge numbers of particles and interactions and the little added value of the extra mathematics involved (considering the incremental gain in numerical precision of the predictions). [8]

Assumptions

Drude used the kinetic theory of gases applied to the gas of electrons moving on a fixed background of "ions"; this is in contrast with the usual way of applying the theory of gases as a neutral diluted gas with no background. The number density of the electron gas was assumed to be

where Z is the effective number of de-localized electrons per ion, for which Drude used the valence number, A is the atomic mass per mole, [Ashcroft & Mermin 10] is the mass density (mass per unit volume) [Ashcroft & Mermin 10] of the "ions", and NA is the Avogadro constant. Considering the average volume available per electron as a sphere:

The quantity is a parameter that describes the electron density and is often of the order of 2 or 3 times the Bohr radius, for alkali metals it ranges from 3 to 6 and some metal compounds it can go up to 10. The densities are of the order of 1000 times of a typical classical gas. [Ashcroft & Mermin 12]

The core assumptions made in the Drude model are the following:

Removing or improving upon each of these assumptions gives more refined models, that can more accurately describe different solids:

Mathematical treatment

DC field

The simplest analysis of the Drude model assumes that electric field E is both uniform and constant, and that the thermal velocity of electrons is sufficiently high such that they accumulate only an infinitesimal amount of momentum dp between collisions, which occur on average every τ seconds. [Ashcroft & Mermin 6]

Then an electron isolated at time t will on average have been travelling for time τ since its last collision, and consequently will have accumulated momentum

During its last collision, this electron will have been just as likely to have bounced forward as backward, so all prior contributions to the electron's momentum may be ignored, resulting in the expression

Substituting the relations

results in the formulation of Ohm's law mentioned above:

Time-varying analysis

Drude response of current density to an AC electric field. DrudeResponse.gif
Drude response of current density to an AC electric field.

The dynamics may also be described by introducing an effective drag force. At time t = t0 + dt the electron's momentum will be:

where can be interpreted as generic force (e.g. Lorentz Force) on the carrier or more specifically on the electron. is the momentum of the carrier with random direction after the collision (i.e. with a momentum ) and with absolute kinetic energy

On average, a fraction of of the electrons will not have experienced another collision, the other fraction that had the collision on average will come out in a random direction and will contribute to the total momentum to only a factor which is of second order. [Ashcroft & Mermin 14]

With a bit of algebra and dropping terms of order , this results in the generic differential equation

The second term is actually an extra drag force or damping term due to the Drude effects.

Constant electric field

At time t = t0 + dt the average electron's momentum will be

and then

where p denotes average momentum and q the charge of the electrons. This, which is an inhomogeneous differential equation, may be solved to obtain the general solution of

for p(t). The steady state solution, dp/dt = 0, is then

As above, average momentum may be related to average velocity and this in turn may be related to current density,

and the material can be shown to satisfy Ohm's law with a DC-conductivity σ0:

AC field

Complex conductivity for different frequencies assuming that t = 10 and that s0 = 1. DrudeModelComplexConductivity.png
Complex conductivity for different frequencies assuming that τ = 10 and that σ0 = 1.

The Drude model can also predict the current as a response to a time-dependent electric field with an angular frequency ω. The complex conductivity is

Here it is assumed that:

In engineering, i is generally replaced by −i (or −j) in all equations, which reflects the phase difference with respect to origin, rather than delay at the observation point traveling in time.


Proof using the equation of motion [Ashcroft & Mermin 15]

Given

And the equation of motion above

substituting

Given

defining the complex conductivity from:

We have:

The imaginary part indicates that the current lags behind the electrical field. This happens because the electrons need roughly a time τ to accelerate in response to a change in the electrical field. Here the Drude model is applied to electrons; it can be applied both to electrons and holes; i.e., positive charge carriers in semiconductors. The curves for σ(ω) are shown in the graph.

If a sinusoidally varying electric field with frequency is applied to the solid, the negatively charged electrons behave as a plasma that tends to move a distance x apart from the positively charged background. As a result, the sample is polarized and there will be an excess charge at the opposite surfaces of the sample.

The dielectric constant of the sample is expressed as

where is the electric displacement and is the polarization density.

The polarization density is written as

and the polarization density with n electron density is

After a little algebra the relation between polarization density and electric field can be expressed as

The frequency dependent dielectric function of the solid is

Proof using Maxwell's equations [Ashcroft & Mermin 16]

Given the approximations for the included above

  • we assumed no electromagnetic field: this is always smaller by a factor v/c given the additional Lorentz term in the equation of motion
  • we assumed spatially uniform field: this is true if the field does not oscillate considerably across a few mean free paths of electrons. This is typically not the case: the mean free path is of the order of Angstroms corresponding to wavelengths typical of X rays.

Given the Maxwell equations without sources (which are treated separately in the scope of plasma oscillations)

then

or

which is an electromagnetic wave equation for a continuous homogeneous medium with dielectric constant in the Helmoltz form

where the refractive index is and the phase velocity is therefore the complex dielectric constant is

which in the case can be approximated to:

At a resonance frequency , called the plasma frequency, the dielectric function changes sign from negative to positive and real part of the dielectric function drops to zero.

The plasma frequency represents a plasma oscillation resonance or plasmon. The plasma frequency can be employed as a direct measure of the square root of the density of valence electrons in a solid. Observed values are in reasonable agreement with this theoretical prediction for a large number of materials. [11] Below the plasma frequency, the dielectric function is negative and the field cannot penetrate the sample. Light with angular frequency below the plasma frequency will be totally reflected. Above the plasma frequency the light waves can penetrate the sample, a typical example are alkaline metals that becomes transparent in the range of ultraviolet radiation. [Ashcroft & Mermin 17]

Thermal conductivity of metals

One great success of the Drude model is the explanation of the Wiedemann-Franz law. This was due to a fortuitous cancellation of errors in Drude's original calculation. Drude predicted the value of the Lorenz number:

Experimental values are typically in the range of for metals at temperatures between 0 and 100 degrees Celsius. [Ashcroft & Mermin 18]

Derivation and Drude's errors [Ashcroft & Mermin 16]

Solids can conduct heat through the motion of electrons, atoms, and ions. Conductors have a large density of free electrons whereas insulators do not; ions may be present in either. Given the good electrical and thermal conductivity in metals and the poor electrical and thermal conductivity in insulators, a natural starting point to estimate the thermal conductivity is to calculate the contribution of the conduction electrons.

The thermal current density is the flux per unit time of thermal energy across a unit area perpendicular to the flow. It is proportional to the temperature gradient.

where is the thermal conductivity. In a one-dimensional wire, the energy of electrons depends on the local temperature If we imagine a temperature gradient in which the temperature decreases in the positive x direction, the average electron velocity is zero (but not the average speed). The electrons arriving at location x from the higher-energy side will arrive with energies , while those from the lower-energy side will arrive with energies . Here, is the average speed of electrons and is the average time since the last collision.

The net flux of thermal energy at location x is the difference between what passes from left to right and from right to left:

The factor of 1/2 accounts for the fact that electrons are equally likely to be moving in either direction. Only half contribute to the flux at x.

When the mean free path is small, the quantity can be approximated by a derivative with respect to x. This gives

Since the electron moves in the , , and directions, the mean square velocity in the direction is . We also have , where is the specific heat capacity of the material.

Putting all of this together, the thermal energy current density is

This determines the thermal conductivity:

(This derivation ignores the temperature-dependence, and hence the position-dependence, of the speed v. This will not introduce a significant error unless the temperature changes rapidly over a distance comparable to the mean free path.)

Dividing the thermal conductivity by the electrical conductivity eliminates the scattering time and gives

At this point of the calculation, Drude made two assumptions now known to be errors. First, he used the classical result for the specific heat capacity of the conduction electrons: . This overestimates the electronic contribution to the specific heat capacity by a factor of roughly 100. Second, Drude used the classical mean square velocity for electrons, . This underestimates the energy of the electrons by a factor of roughly 100. The cancellation of these two errors results in a good approximation to the conductivity of metals. In addition to these two estimates, Drude also made a statistical error and overestimated the mean time between collisions by a factor of 2. This confluence of errors gave a value for the Lorenz number that was remarkably close to experimental values.

The correct value of the Lorenz number as estimated from the Drude model is [Ashcroft & Mermin 19]

Thermopower

A generic temperature gradient when switched on in a thin bar will trigger a current of electrons towards the lower temperature side, given the experiments are done in an open circuit manner this current will accumulate on that side generating an electric field countering the electric current. This field is called thermoelectric field:

and Q is called thermopower. The estimates by Drude are a factor of 100 low given the direct dependency with the specific heat.

where the typical thermopowers at room temperature are 100 times smaller of the order of micro-volts. [Ashcroft & Mermin 20]

Proof together with the Drude errors [Ashcroft & Mermin 21]

From the simple one dimensional model

Expanding to 3 degrees of freedom

The mean velocity due to the Electric field (given the equation of motion above at equilibrium)

To have a total current null we have

And as usual in the Drude case

where the typical thermopowers at room temperature are 100 times smaller of the order of micro-Volts. [Ashcroft & Mermin 20]

Accuracy of the model

The Drude model provides a very good explanation of DC and AC conductivity in metals, the Hall effect, and the magnetoresistance [Ashcroft & Mermin 14] in metals near room temperature. The model also explains partly the Wiedemann–Franz law of 1853.

Drude formula is derived in a limited way, namely by assuming that the charge carriers form a classical ideal gas. When quantum theory is considered, the Drude model can be extended to the free electron model, where the carriers follow Fermi–Dirac distribution. The conductivity predicted is the same as in the Drude model because it does not depend on the form of the electronic speed distribution. However, Drude's model greatly overestimates the electronic heat capacity of metals. In reality, metals and insulators have roughly the same heat capacity at room temperature. Also, the Drude model does not explain the scattered trend of electrical conductivity versus frequency above roughly 2 THz. [12] [13]

The model can also be applied to positive (hole) charge carriers.

Drude response in real materials

The characteristic behavior of a Drude metal in the time or frequency domain, i.e. exponential relaxation with time constant τ or the frequency dependence for σ(ω) stated above, is called Drude response. In a conventional, simple, real metal (e.g. sodium, silver, or gold at room temperature) such behavior is not found experimentally, because the characteristic frequency τ−1 is in the infrared frequency range, where other features that are not considered in the Drude model (such as band structure) play an important role. [12] But for certain other materials with metallic properties, frequency-dependent conductivity was found that closely follows the simple Drude prediction for σ(ω). These are materials where the relaxation rate τ−1 is at much lower frequencies. [12] This is the case for certain doped semiconductor single crystals, [14] high-mobility two-dimensional electron gases, [15] and heavy-fermion metals. [16]

See also

Related Research Articles

In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system. Mathematically, the theorem states

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Equipartition theorem</span> Theorem in classical statistical mechanics

In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.

<span class="mw-page-title-main">Wiedemann–Franz law</span> Law of physics

In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution of the thermal conductivity (κ) to the electrical conductivity (σ) of a metal is proportional to the temperature (T).

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

In the fields of computer vision and image analysis, the scale-invariant feature operator is an algorithm to detect local features in images. The algorithm was published by Förstner et al. in 2009.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

<span class="mw-page-title-main">Lorentz oscillator model</span> Theoretical model describing the optical response of bound charges

The Lorentz oscillator model describes the optical response of bound charges. The model is named after the Dutch physicist Hendrik Antoon Lorentz. It is a classical, phenomenological model for materials with characteristic resonance frequencies for optical absorption, e.g. ionic and molecular vibrations, interband transitions (semiconductors), phonons, and collective excitations.

References

Citations

References

  1. Drude, Paul (1900). "Zur Elektronentheorie der Metalle". Annalen der Physik . 306 (3): 566–613. Bibcode:1900AnP...306..566D. doi: 10.1002/andp.19003060312 .[ dead link ]
  2. Drude, Paul (1900). "Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte". Annalen der Physik . 308 (11): 369–402. Bibcode:1900AnP...308..369D. doi:10.1002/andp.19003081102.[ dead link ]
  3. springer, ed. (2009). ""Free" Electrons in Solids". Free electrons in solid. pp. 135–158. doi:10.1007/978-3-540-93804-0_6. ISBN   978-3-540-93803-3.
  4. Edward M. Purcell (1965). Electricity and Magnetism . McGraw-Hill. pp.  117–122. ISBN   978-0-07-004908-6.
  5. David J. Griffiths (1999). Introduction to Electrodynamics. Prentice-Hall. pp.  289. ISBN   978-0-13-805326-0.
  6. "Niels bohr Nobel Lecture" (PDF).
  7. Lorentz, Hendrik (1905). "The motion of electrons in metallic bodies I" (PDF). KNAW, Proceedings. 7: 438–453 via KNAW.
  8. "Solid State Physics, Lec ture 3: Drude Theory and Sommerfeld Free Electron". YouTube .
  9. Einstein (1924). "Quantum Theory of the Monatomic Ideal Gas". Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse: 261–267.
  10. "Solid State Physics, Lecture17: Dynamics of Electrons in Bands". YouTube .
  11. C. Kittel (1953–1976). Introduction to Solid State Physics . Wiley & Sons. ISBN   978-0-471-49024-1.
  12. 1 2 3 M. Dressel; M. Scheffler (2006). "Verifying the Drude response". Annalen der Physik . 15 (7–8): 535–544. Bibcode:2006AnP...518..535D. doi:10.1002/andp.200510198. S2CID   14153937.
  13. Jeon, Tae-In; Grischkowsky, D.; Mukherjee, A. K.; Menon, Reghu (2000-10-16). "Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy". Applied Physics Letters. 77 (16): 2452–2454. Bibcode:2000ApPhL..77.2452J. doi:10.1063/1.1319188. hdl: 11244/19868 . ISSN   0003-6951.
  14. M. van Exter; D. Grischkowsky (1990). "Carrier dynamics of electrons and holes in moderately doped silicon" (PDF). Physical Review B . 41 (17): 12140–12149. Bibcode:1990PhRvB..4112140V. doi:10.1103/PhysRevB.41.12140. hdl: 11244/19898 . PMID   9993669.
  15. P. J. Burke; I. B. Spielman; J. P. Eisenstein; L. N. Pfeiffer; K. W. West (2000). "High frequency conductivity of the high-mobility two-dimensional electron gas" (PDF). Applied Physics Letters . 76 (6): 745–747. Bibcode:2000ApPhL..76..745B. doi:10.1063/1.125881.
  16. M. Scheffler; M. Dressel; M. Jourdan; H. Adrian (2005). "Extremely slow Drude relaxation of correlated electrons". Nature . 438 (7071): 1135–1137. Bibcode:2005Natur.438.1135S. doi:10.1038/nature04232. PMID   16372004. S2CID   4391917.

General