Magnetoresistance

Last updated

Magnetoresistance is the tendency of a material (often ferromagnetic) to change the value of its electrical resistance in an externally-applied magnetic field. There are a variety of effects that can be called magnetoresistance. Some occur in bulk non-magnetic metals and semiconductors, such as geometrical magnetoresistance, Shubnikov–de Haas oscillations, or the common positive magnetoresistance in metals. [1] Other effects occur in magnetic metals, such as negative magnetoresistance in ferromagnets [2] or anisotropic magnetoresistance (AMR). Finally, in multicomponent or multilayer systems (e.g. magnetic tunnel junctions), giant magnetoresistance (GMR), tunnel magnetoresistance (TMR), colossal magnetoresistance (CMR), and extraordinary magnetoresistance (EMR) can be observed.

Contents

The first magnetoresistive effect was discovered in 1856 by William Thomson, better known as Lord Kelvin, but he was unable to lower the electrical resistance of anything by more than 5%. Today, systems including semimetals [3] and concentric ring EMR structures are known. In these, a magnetic field can adjust the resistance by orders of magnitude. Since different mechanisms can alter the resistance, it is useful to separately consider situations where it depends on a magnetic field directly (e.g. geometric magnetoresistance and multiband magnetoresistance) and those where it does so indirectly through magnetization (e.g. AMR and TMR).

Discovery

William Thomson (Lord Kelvin) first discovered ordinary magnetoresistance in 1856. [4] He experimented with pieces of iron and discovered that the resistance increases when the current is in the same direction as the magnetic force and decreases when the current is at 90° to the magnetic force. He then did the same experiment with nickel and found that it was affected in the same way but the magnitude of the effect was greater. This effect is referred to as anisotropic magnetoresistance (AMR).

Animation about graphs related to the discovery of giant magnetoresistance.
Corbino disc. With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. When a magnetic field along the axis is turned on (B points directly out of the screen), the Lorentz force drives a circular component of current, and the resistance between the inner and outer rims goes up. This increase in resistance due to the magnetic field is called magnetoresistance. Corbino disc.PNG
Corbino disc. With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. When a magnetic field along the axis is turned on (B points directly out of the screen), the Lorentz force drives a circular component of current, and the resistance between the inner and outer rims goes up. This increase in resistance due to the magnetic field is called magnetoresistance.

In 2007, Albert Fert and Peter Grünberg were jointly awarded the Nobel Prize for the discovery of giant magnetoresistance. [5]

Geometrical magnetoresistance

An example of magnetoresistance due to direct action of magnetic field on electric current can be studied on a Corbino disc (see Figure). It consists of a conducting annulus with perfectly conducting rims. Without a magnetic field, the battery drives a radial current between the rims. When a magnetic field perpendicular to the plane of the annulus is applied, (either into or out of the page) a circular component of current flows as well, due to Lorentz force. Initial interest in this problem began with Boltzmann in 1886, and independently was re-examined by Corbino in 1911. [6]

In a simple model, supposing the response to the Lorentz force is the same as for an electric field, the carrier velocity v is given by: where μ is the carrier mobility. Solving for the velocity, we find:

where the effective reduction in mobility due to the B-field (for motion perpendicular to this field) is apparent. Electric current (proportional to the radial component of velocity) will decrease with increasing magnetic field and hence the resistance of the device will increase. Critically, this magnetoresistive scenario depends sensitively on the device geometry and current lines and it does not rely on magnetic materials.

In a semiconductor with a single carrier type, the magnetoresistance is proportional to (1 + (μB)2), where μ is the semiconductor mobility (units m2·V1·s1, equivalently m2·Wb1, or T 1) and B is the magnetic field (units teslas). Indium antimonide, an example of a high mobility semiconductor, could have an electron mobility above 4 m2/Wb at 300  K . So in a 0.25 T field, for example the magnetoresistance increase would be 100%.

Anisotropic magnetoresistance (AMR)

The resistance of a thin Permalloy film is shown here as a function of the angle of an applied external field. AMR of Permalloy.png
The resistance of a thin Permalloy film is shown here as a function of the angle of an applied external field.

Thomson's experiments [4] are an example of AMR, [7] a property of a material in which a dependence of electrical resistance on the angle between the direction of electric current and direction of magnetization is observed. The effect arises in most cases from the simultaneous action of magnetization and spin–orbit interaction (exceptions related to non-collinear magnetic order notwithstanding) [8] and its detailed mechanism depends on the material. It can be for example due to a larger probability of s-d scattering of electrons in the direction of magnetization (which is controlled by the applied magnetic field). The net effect (in most materials) is that the electrical resistance has maximum value when the direction of current is parallel to the applied magnetic field. [9] AMR of new materials is being investigated and magnitudes up to 50% have been observed in some uranium (but otherwise quite conventional) ferromagnetic compounds. [10] Materials with extreme AMR have been identified [11] driven by unconventional mechanisms such as a metal-insulator transition triggered by rotating the magnetic moments (while for some directions of magnetic moments, the system is semimetallic, for other directions a gap opens).

In polycrystalline ferromagnetic materials, the AMR can only depend on the angle φ = ψθ between the magnetization and current direction and (as long as the resistivity of the material can be described by a rank-two tensor), it must follow [12] where ρ is the (longitudinal) resistivity of the film and ρ∥,⟂ are the resistivities for φ = 0° and φ = 90°, respectively. Associated with longitudinal resistivity, there is also transversal resistivity dubbed (somewhat confusingly [lower-alpha 1] ) the planar Hall effect. In monocrystals, resistivity ρ depends also on ψ and θ individually.

To compensate for the non-linear characteristics and inability to detect the polarity of a magnetic field, the following structure is used for sensors. It consists of stripes of aluminum or gold placed on a thin film of permalloy (a ferromagnetic material exhibiting the AMR effect) inclined at an angle of 45°. This structure forces the current not to flow along the “easy axes” of thin film, but at an angle of 45°. The dependence of resistance now has a permanent offset which is linear around the null point. Because of its appearance, this sensor type is called 'barber pole'.

The AMR effect is used in a wide array of sensors for measurement of Earth's magnetic field (electronic compass), for electric current measuring (by measuring the magnetic field created around the conductor), for traffic detection and for linear position and angle sensing. The biggest AMR sensor manufacturers are Honeywell, NXP Semiconductors, STMicroelectronics, and Sensitec GmbH.

As theoretical aspects, I. A. Campbell, A. Fert, and O. Jaoul (CFJ) [13] derived an expression of the AMR ratio for Ni-based alloys using the two-current model with s-s and s-d scattering processes, where 's' is a conduction electron, and 'd' is 3d states with the spin-orbit interaction. The AMR ratio is expressed as with and , where , , and are a spin-orbit coupling constant (so-called ), an exchange field, and a resistivity for spin , respectively. In addition, recently, Satoshi Kokado et al. [14] [15] have obtained the general expression of the AMR ratio for 3d transition-metal ferromagnets by extending the CFJ theory to a more general one. The general expression can also be applied to half-metals.

See also

Footnotes

  1. The (ordinary) Hall effect changes sign upon magnetic field reversal and it is an orbital effect (unrelated to spin) due to the Lorentz force. Transversal AMR (planar Hall effect [lower-alpha 2] ) does not change sign and it is caused by spin-orbit interaction.
  2. Tang, H. X.; Kawakami, R. K.; Awschalom, D. D.; Roukes, M. L. (March 2003), "Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices" (PDF), Phys. Rev. Lett., 90 (10): 107201, arXiv: cond-mat/0210118 , Bibcode:2003PhRvL..90j7201T, doi:10.1103/PhysRevLett.90.107201, PMID   12689027, S2CID   1485882

Related Research Articles

<span class="mw-page-title-main">Hall effect</span> Electromagnetic effect in physics

The Hall effect is the production of a potential difference across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879.

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

<span class="mw-page-title-main">Solenoid</span> Type of electromagnet formed by a coil of wire

A solenoid is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

In electromagnetism, the magnetic susceptibility is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M to the applied magnetic field intensity H. This allows a simple classification, into two categories, of most materials' responses to an applied magnetic field: an alignment with the magnetic field, χ > 0, called paramagnetism, or an alignment against the field, χ < 0, called diamagnetism.

<span class="mw-page-title-main">Skin effect</span> Tendency of AC current flow in a conductors outer layer

In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth.

<span class="mw-page-title-main">Permeability (electromagnetism)</span> Ability of magnetization

In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter μ. It is the ratio of the magnetic induction to the magnetizing field as a function of the field in a material. The term was coined by William Thomson, 1st Baron Kelvin in 1872, and used alongside permittivity by Oliver Heaviside in 1885. The reciprocal of permeability is magnetic reluctivity.

<span class="mw-page-title-main">Tunnel magnetoresistance</span> Magnetic effect in insulators between ferromagnets

Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough, electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon, and lies in the study of spintronics.

<span class="mw-page-title-main">Giant magnetoresistance</span> Phenomenom involving the change of conductivity in metallic layers

Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR, which also sets the foundation for the study of spintronics.

<span class="mw-page-title-main">Magnetostatics</span> Branch of physics about magnetism in systems with steady electric currents

Magnetostatics is the study of magnetic fields in systems where the currents are steady. It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales of nanoseconds or less. Magnetostatics is even a good approximation when the currents are not static – as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory.

<span class="mw-page-title-main">Magnetization</span> Physical quantity, density of magnetic moment per volume

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.

Exchange bias or exchange anisotropy occurs in bilayers of magnetic materials where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the soft magnetization curve of a ferromagnetic film. The exchange bias phenomenon is of tremendous utility in magnetic recording, where it is used to pin the state of the readback heads of hard disk drives at exactly their point of maximum sensitivity; hence the term "bias."

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

Micromagnetics is a field of physics dealing with the prediction of magnetic behaviors at sub-micrometer length scales. The length scales considered are large enough for the atomic structure of the material to be ignored, yet small enough to resolve magnetic structures such as domain walls or vortices.

Gallium manganese arsenide, chemical formula (Ga,Mn)As is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide,, and readily compatible with existing semiconductor technologies. Differently from other dilute magnetic semiconductors, such as the majority of those based on II-VI semiconductors, it is not paramagnetic but ferromagnetic, and hence exhibits hysteretic magnetization behavior. This memory effect is of importance for the creation of persistent devices. In (Ga,Mn)As, the manganese atoms provide a magnetic moment, and each also acts as an acceptor, making it a p-type material. The presence of carriers allows the material to be used for spin-polarized currents. In contrast, many other ferromagnetic magnetic semiconductors are strongly insulating and so do not possess free carriers. (Ga,Mn)As is therefore a candidate material for spintronic devices but it is likely to remain only a testbed for basic research as its Curie temperature could only be raised up to approximately 200 K.

The article Ferromagnetic material properties is intended to contain a glossary of terms used to describe ferromagnetic materials, and magnetic cores.

Voigt–Thomson law describes anisotropic magnetoresistance effect in a thin film strip as a relationship between the electric resistivity and the direction of electric current:

The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane. This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward with Yurii A. Bychkov in 1984 for two-dimensional systems.

Spin Hall magnetoresistance (SMR) is a transport phenomenon that is found in some electrical conductors that have at least one surface in direct contact with another magnetic material due to changes in the spin current that are present in metals and semiconductors with a large spin Hall angle. It is most easily detected when the magnetic material is an insulator which eliminates other magnetically sensitive transport effects arising from conduction in the magnetic material.

<span class="mw-page-title-main">Spinterface</span>

Spinterface is a term coined to indicate an interface between a ferromagnet and an organic semiconductor. This is a widely investigated topic in molecular spintronics, since the role of interfaces plays a huge part in the functioning of a device. In particular, spinterfaces are widely studied in the scientific community because of their hybrid organic/inorganic composition. In fact, the hybridization between the metal and the organic material can be controlled by acting on the molecules, which are more responsive to electrical and optical stimuli than metals. This gives rise to the possibility of efficiently tuning the magnetic properties of the interface at the atomic scale.

References

  1. Pippard, A.B. (1989). Magnetoresistance in Metals. Cambridge University Press. ISBN   978-0-521-32660-5.
  2. Coleman, R.V.; Isin, A. (1966), "Magnetoresistance in Iron Single Crystals", Journal of Applied Physics, 37 (3): 1028–9, Bibcode:1966JAP....37.1028C, doi:10.1063/1.1708320
  3. "Unstoppable Magnetoresistance".
  4. 1 2 Thomson, W. (18 June 1857), "On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron", Proc. R. Soc. Lond., 8: 546–550, doi: 10.1098/rspl.1856.0144
  5. The Nobel Prize in Physics 2007, Nobel Media AB, 9 Oct 2007, retrieved 25 Jun 2014
  6. G Giuliani (2008). "A general law for electromagnetic induction". EPL. 81 (6): 60002. arXiv: 1502.00502 . Bibcode:2008EL.....8160002G. doi:10.1209/0295-5075/81/60002. S2CID   14917438.
  7. Ritzinger, Philipp; Vyborny, Karel (2023). "Anisotropic magnetoresistance: Materials, models and applications". Royal Society Open Science. 10 (10). arXiv: 2212.03700 . Bibcode:2023RSOS...1030564R. doi:10.1098/rsos.230564. PMC   10582618 . PMID   37859834.
  8. see Ritzinger & Vyborny (2023) , §4.2.
  9. McGuire, T.; Potter, R. (1975). "Anisotropic magnetoresistance in ferromagnetic 3d alloys" (PDF). IEEE Transactions on Magnetics. 11 (4): 1018–38. Bibcode:1975ITM....11.1018M. doi:10.1109/TMAG.1975.1058782.
  10. Wiśniewski, P. (2007). "Giant anisotropic magnetoresistance and magnetothermopower in cubic 3:4 uranium pnictides". Applied Physics Letters. 90 (19): 192106. Bibcode:2007ApPhL..90s2106W. doi:10.1063/1.2737904.
  11. Yang, Huali (2021). "Colossal angular magnetoresistance in the antiferromagnetic semiconductor EuTe2". Phys. Rev. B. 104 (21): 214419. Bibcode:2021PhRvB.104u4419Y. doi:10.1103/PhysRevB.104.214419. S2CID   245189642.
  12. De Ranieri, E.; Rushforth, A. W.; Výborný, K.; Rana, U.; Ahmed, E.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Irvine, A. C.; Wunderlich, J.; Jungwirth, T. (10 June 2008), "Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As", New J. Phys., 10 (6): 065003, arXiv: 0802.3344 , Bibcode:2008NJPh...10f5003D, doi:10.1088/1367-2630/10/6/065003, S2CID   119291699
  13. Campbell, I. A.; Fert, A.; Jaoul, O. (1970). "The spontaneous resistivity anisotropy in Ni-based alloys". J. Phys. C. 3 (1S): S95–S101. Bibcode:1970JPhC....3S..95C. doi:10.1088/0022-3719/3/1S/310.
  14. Kokado, Satoshi; Tsunoda, Masakiyo; Harigaya, Kikuo; Sakuma, Akimasa (2012). "Anisotropic Magnetoresistance Effects in Fe, Co, Ni, Fe4N, and Half-Metallic Ferromagnet: A Systematic Analysis". J. Phys. Soc. Jpn. 81 (2): 024705–1–17. arXiv: 1111.4864 . Bibcode:2012JPSJ...81b4705K. doi:10.1143/JPSJ.81.024705. S2CID   100002412.
  15. Kokado, Satoshi; Tsunoda, Masakiyo (2013). "Anisotropic Magnetoresistance Effect: General Expression of AMR Ratio and Intuitive Explanation for Sign of AMR Ratio". Advanced Materials Research. 750–752: 978–982. arXiv: 1305.3517 . Bibcode:2013arXiv1305.3517K. doi:10.4028/www.scientific.net/AMR.750-752.978. S2CID   35733115.