Electron hole

Last updated
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. Electron-hole.svg
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged.

In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or crystal lattice the negative charge of the electrons is balanced by the positive charge of the atomic nuclei, the absence of an electron leaves a net positive charge at the hole's location. Holes are not actually particles, but rather quasiparticles; they are different from the positron, which is the antiparticle of the electron. (See also Dirac sea.)

Physics Study of the fundamental properties of matter and energy

Physics is the natural science that studies matter, its motion and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

Chemistry scientific discipline

Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

Electronic engineering electrical engineering discipline which utilizes nonlinear and active electrical components to design electronic circuits, devices, and their systems

Electronic engineering is an electrical engineering discipline which utilizes nonlinear and active electrical components to design electronic circuits, devices, VLSI devices and their systems. The discipline typically also designs passive electrical components, usually based on printed circuit boards.

Contents

Holes in a metal [1] or semiconductor crystal lattice can move through the lattice as electrons can, and act similarly to positively-charged particles. They play an important role in the operation of semiconductor devices such as transistors, diodes and integrated circuits. If an electron is excited into a higher state it leaves a hole in its old state. This meaning is used in Auger electron spectroscopy (and other x-ray techniques), in computational chemistry, and to explain the low electron-electron scattering-rate in crystals (metals, semiconductors).

A semiconductor material has an electrical conductivity value falling between that of a conductor, such as metallic copper, and an insulator, such as glass. Its resistance decreases as its temperature increases, which is the behaviour opposite to that of a metal. Its conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits and others. Silicon is a critical element for fabricating most electronic circuits.

Electric charge Physical property that quantifies an objects interaction with electric fields

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charge: positive and negative. Like charges repel and unlike attract. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

A semiconductor device is an electronic component that exploits the electronic properties of semiconductor material, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced vacuum tubes in most applications. They use electrical conduction in the solid state rather than the gaseous state or thermionic emission in a vacuum.

In crystals, electronic band structure calculations lead to an effective mass for the electrons, which is typically negative at the top of a band. The negative mass is an unintuitive concept, [2] and in these situations a more familiar picture is found by considering a positive charge with a positive mass.

Crystal solid material whose constituent atoms, molecules, or ions are arranged in an ordered pattern extending in all three spatial dimensions

A crystal or crystalline solid is a solid material whose constituents are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification.

In solid-state physics, the electronic band structure of a solid describes the range of energies an electron within the solid may have and ranges of energy that it may not have.

In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.

Solid-state physics

In solid-state physics, an electron hole (usually referred to simply as a hole) is the absence of an electron from a full valence band. A hole is essentially a way to conceptualize the interactions of the electrons within a nearly full valence band of a crystal lattice, which is missing a small fraction of its electrons. In some ways, the behavior of a hole within a semiconductor crystal lattice is comparable to that of the bubble in a full bottle of water. [3]

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors.

Crystal structure Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

Simplified analogy: Empty seat in an auditorium

A children's puzzle which illustrates the mobility of holes in an atomic lattice. The tiles are analogous to electrons, while the missing tile (lower right corner) is analogous to a hole. Just as the position of the missing tile can be moved to different locations by moving the tiles, a hole in a crystal lattice can move to different positions in the lattice by the motion of the surrounding electrons. 15-puzzle-02.jpg
A children's puzzle which illustrates the mobility of holes in an atomic lattice. The tiles are analogous to electrons, while the missing tile (lower right corner) is analogous to a hole. Just as the position of the missing tile can be moved to different locations by moving the tiles, a hole in a crystal lattice can move to different positions in the lattice by the motion of the surrounding electrons.

Hole conduction in a valence band can be explained by the following analogy. Imagine a row of people seated in an auditorium, where there are no spare chairs. Someone in the middle of the row wants to leave, so he jumps over the back of the seat into another row, and walks out. The empty row is analogous to the conduction band, and the person walking out is analogous to a conduction electron.

Now imagine someone else comes along and wants to sit down. The empty row has a poor view; so he does not want to sit there. Instead, a person in the crowded row moves into the empty seat the first person left behind. The empty seat moves one spot closer to the edge and the person waiting to sit down. The next person follows, and the next, et cetera. One could say that the empty seat moves towards the edge of the row. Once the empty seat reaches the edge, the new person can sit down.

In the process everyone in the row has moved along. If those people were negatively charged (like electrons), this movement would constitute conduction. If the seats themselves were positively charged, then only the vacant seat would be positive. This is a very simple model of how hole conduction works.

Electrical resistivity and its inverse, electrical conductivity, is a fundamental property of a material that quantifies how strongly it resists or conducts electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-meter (Ω⋅m). For example, if a 1 m × 1 m × 1 m solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Instead of analyzing the movement of an empty state in the valence band as the movement of many separate electrons, a single equivalent imaginary particle called a "hole" is considered. In an applied electric field, the electrons move in one direction, corresponding to the hole moving in the other. If a hole associates itself with a neutral atom, that atom loses an electron and becomes positive. Therefore, the hole is taken to have positive charge of +e, precisely the opposite of the electron charge.

In reality, due to the uncertainty principle of quantum mechanics, combined with the energy levels available in the crystal, the hole is not localizable to a single position as described in the previous example. Rather, the positive charge which represents the hole spans an area in the crystal lattice covering many hundreds of unit cells. This is equivalent to being unable to tell which broken bond corresponds to the "missing" electron. Conduction band electrons are similarly delocalized.

Detailed picture: A hole is the absence of a negative-mass electron

A semiconductor electronic band structure (right) includes the dispersion relation of each band, i.e. the energy of an electron E as a function of the electron's wavevector k. The "unfilled band" is the semiconductor's conduction band; it curves upward indicating positive effective mass. The "filled band" is the semiconductor's valence band; it curves downward indicating negative effective mass. BandDiagram-Semiconductors-E.PNG
A semiconductor electronic band structure (right) includes the dispersion relation of each band, i.e. the energy of an electron E as a function of the electron's wavevector k. The "unfilled band" is the semiconductor's conduction band; it curves upward indicating positive effective mass. The "filled band" is the semiconductor's valence band; it curves downward indicating negative effective mass.

The analogy above is quite simplified, and cannot explain why holes create an opposite effect to electrons in the Hall effect and Seebeck effect. A more precise and detailed explanation follows. [4]

A dispersion relation is the relationship between wavevector (k-vector) and energy in a band, part of the electronic band structure. In quantum mechanics, the electrons are waves, and energy is the wave frequency. A localized electron is a wavepacket, and the motion of an electron is given by the formula for the group velocity of a wave. An electric field affects an electron by gradually shifting all the wavevectors in the wavepacket, and the electron accelerates when its wave group velocity changes. Therefore, again, the way an electron responds to forces is entirely determined by its dispersion relation. An electron floating in space has the dispersion relation E=ℏ2k2/(2m), where m is the (real) electron mass and ℏ is reduced Planck constant. Near the bottom of the conduction band of a semiconductor, the dispersion relation is instead E=ℏ2k2/(2m*) (m* is the effective mass ), so a conduction-band electron responds to forces as if it had the mass m*.

The dispersion relation near the top of the valence band is E=ℏ2k2/(2m*) with negative effective mass. So electrons near the top of the valence band behave like they have negative mass. When a force pulls the electrons to the right, these electrons actually move left. This is solely due to the shape of the valence band, and is unrelated to whether the band is full or empty. If you could somehow empty out the valence band and just put one electron near the valence band maximum (an unstable situation), this electron would move the "wrong way" in response to forces.

A perfectly full band always has zero current. One way to think about this fact is that the electron states near the top of the band have negative effective mass, and those near the bottom of the band have positive effective mass, so the net motion is exactly zero. If an otherwise-almost-full valence band has a state without an electron in it, we say that this state is occupied by a hole. There is a mathematical shortcut for calculating the current due to every electron in the whole valence band: Start with zero current (the total if the band were full), and subtract the current due to the electrons that would be in each hole state if it wasn't a hole. Since subtracting the current caused by a negative charge in motion is the same as adding the current caused by a positive charge moving on the same path, the mathematical shortcut is to pretend that each hole state is carrying a positive charge, while ignoring every other electron state in the valence band.

This fact follows from the discussion and definition above. This is an example where the auditorium analogy above is misleading. When a person moves left in a full auditorium, an empty seat moves right. But in this section we are imagining how electrons move through k-space, not real space, and the effect of a force is to move all the electrons through k-space in the same direction at the same time. In this context, a better analogy is a bubble underwater in a river: The bubble moves the same direction as the water, not opposite.

Since force = mass × acceleration, a negative-effective-mass electron near the top of the valence band would move the opposite direction as a positive-effective-mass electron near the bottom of the conduction band, in response to a given electric or magnetic force. Therefore, a hole moves this way as well.

From the above, a hole (1) carries a positive charge, and (2) responds to electric and magnetic fields as if it had a positive charge and positive mass. (The latter is because a particle with positive charge and positive mass responds to electric and magnetic fields in the same way as a particle with negative charge and negative mass.) That explains why holes can be treated in all situations as ordinary positively charged quasiparticles.

Role in semiconductor technology

In some semiconductors, such as silicon, the hole's effective mass is dependent on direction (anisotropic), however a value averaged over all directions can be used for some macroscopic calculations.

In most semiconductors, the effective mass of a hole is much larger than that of an electron. This results in lower mobility for holes under the influence of an electric field and this may slow down the speed of the electronic device made of that semiconductor. This is one major reason for adopting electrons as the primary charge carriers, whenever possible in semiconductor devices, rather than holes. Also, why NMOS logic is faster than PMOS logic.

However, in many semiconductor devices, both electrons and holes play an essential role. Examples include p–n diodes, bipolar transistors, and CMOS logic.

Holes in quantum chemistry

An alternate meaning for the term electron hole is used in computational chemistry. In coupled cluster methods, the ground (or lowest energy) state of a molecule is interpreted as the "vacuum state"—conceptually, in this state there are no electrons. In this scheme, the absence of an electron from a normally filled state is called a "hole" and is treated as a particle, and the presence of an electron in a normally empty state is simply called an "electron". This terminology is almost identical to that used in solid-state physics.

See also

Related Research Articles

Electric current flow of electric charge

An electric current is the rate of flow of electric charge past a point or region. An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).

Exciton Quasiparticle which is a bound state of an electron and an electron hole

An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The exciton is regarded as an elementary excitation of condensed matter that can transport energy without transporting net electric charge.

Band gap energy range in a solid where no electron states can exist; energy difference (in electron volts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors

In solid-state physics, a band gap, also called an energy gap or bandgap, is an energy range in a solid where no electron states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote a valence electron bound to an atom to become a conduction electron, which is free to move within the crystal lattice and serve as a charge carrier to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move in the solid; however, if some electrons transfer from the valence to the conduction band, then current can flow. Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances with large band gaps are generally insulators, those with smaller band gaps are semiconductors, while conductors either have very small band gaps or none, because the valence and conduction bands overlap.

In chemistry and atomic physics, the electron affinity (Eea) of an atom or molecule is defined as the amount of energy released or spent when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion.

In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current. In conducting media, particles serve to carry charge:

In physics, quasiparticles and collective excitations are emergent phenomena that occur when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in free space. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with all of the other electrons and nuclei; however it approximately behaves like an electron with a different mass traveling unperturbed through free space. This "electron with a different mass" is called an "electron quasiparticle". In another example, the aggregate motion of electrons in the valence band of a semiconductor or a hole band in a metal is the same as if the material instead contained positively charged quasiparticles called electron holes. Other quasiparticles or collective excitations include phonons, plasmons, and many others.

Semimetal material with a very small overlap between the bottom of the conduction band and the top of the valence band

A semimetal is a material with a very small overlap between the bottom of the conduction band and the top of the valence band. According to electronic band theory, solids can be classified as insulators, semiconductors, semimetals, or metals. In insulators and semiconductors the filled valence band is separated from an empty conduction band by a band gap. For insulators, the magnitude of the band gap is larger than that of a semiconductor. Because of the slight overlap between the conduction and valence bands, semimetal has no band gap and a negligible density of states at the Fermi level. A metal, by contrast, has an appreciable density of states at the Fermi level because the conduction band is partially filled.

A superlattice is a periodic structure of layers of two materials. Typically, the thickness of one layer is several nanometers. It can also refer to a lower-dimensional structure such as an array of quantum dots or quantum wires.

In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have been diffused away, or have been forced away by an electric field. The only elements left in the depletion region are ionized donor or acceptor impurities.

In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.


An intrinsic(pure) semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may even be the case after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.

An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal. The doping agents used are of two types, resulting in two types of extrinsic semiconductor. An electron donor dopant is an atom which, when incorporated in the crystal, releases a mobile conduction electron into the crystal lattice. An extrinsic semiconductor which has been doped with electron donor atoms is called an n-type semiconductor, because the majority of charge carriers in the crystal are negative electrons. An electron acceptor dopant is an atom which accepts an electron from the lattice, creating a vacancy where an electron should be called a hole which can move through the crystal like a positively charged particle. An extrinsic semiconductor which has been doped with electron acceptor atoms is called a p-type semiconductor, because the majority of charge carriers in the crystal are positive holes.

Direct and indirect band gaps

In semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the material has an "indirect gap". The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

Field effect (semiconductor)

In physics, the field effect refers to the modulation of the electrical conductivity of a material by the application of an external electric field.

Valence and conduction bands Electron energy bands which determine the electrical conductivity of a material

In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level and thus determine the electrical conductivity of the solid. In non-metals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states. On a graph of the electronic band structure of a material, the valence band is located below the Fermi level, while the conduction band is located above it.

References

  1. Ashcroft and Mermin (1976). Solid State Physics (1st ed.). Holt, Reinhart, and Winston. pp. 299–302. ISBN   978-0030839931.
  2. For these negative mass electrons, momentum is opposite to velocity, so forces acting on these electrons cause their velocity to change in the 'wrong' direction. As these electrons gain energy (moving towards the top of the band), they slow down.
  3. Weller, Paul F. (1967). "An analogy for elementary band theory concepts in solids". J. Chem. Educ. 44 (7): 391. Bibcode:1967JChEd..44..391W. doi:10.1021/ed044p391.
  4. 1 2 3 4 5 Kittel, Introduction to Solid State Physics, 8th edition, pp. 194–196.