Dark photon

Last updated

The dark photon (also hidden, heavy, para-, or secluded photon) is a hypothetical hidden sector particle, proposed as a force carrier similar to the photon of electromagnetism but potentially connected to dark matter. [1] In a minimal scenario, this new force can be introduced by extending the gauge group of the Standard Model of Particle Physics with a new abelian U(1) gauge symmetry. The corresponding new spin-1 gauge boson (i.e., the dark photon) can then couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon [2] and could thus be detected. The dark photon can also interact with the Standard Model if some of the fermions are charged under the new abelian group. [3] The possible charging arrangements are restricted by a number of consistency requirements such as anomaly cancellation and constraints coming from Yukawa matrices.

Contents

Motivation

Observations of gravitational effects that cannot be explained by visible matter alone imply the existence of matter which does not or does only very weakly couple to the known forces of nature. This dark matter dominates the matter density of the universe, but its particles (if there are any) have eluded direct and indirect detection so far. Given the rich interaction structure of the well-known Standard Model particles, which make up only the subdominant component of the universe, it is natural to think about a similarly interactive behaviour of dark sector particles. Dark photons could be part of these interactions among dark matter particles and provide a non-gravitational window (a so-called vector portal) into their existence by kinematically mixing with the Standard Model photon. [1] [4] Further motivation for the search for dark photons comes from several observed anomalies in astrophysics (e.g., in cosmic rays) that could be related to dark matter interacting with a dark photon. [5] [6] Arguably the most interesting application of dark photons arises in the explanation of the discrepancy between the measured and the calculated anomalous magnetic moment of the muon, [7] [8] [9] although the simplest realisations of this idea are now in conflict with other experimental data. [10] This discrepancy is usually thought of as a persisting hint for physics beyond the Standard Model and should be accounted for by general new physics models. Beside the effect on electromagnetism via kinetic mixing and possible interactions with dark matter particles, dark photons (if massive) can also play the role of a dark matter candidate themselves. This is theoretically possible through the misalignment mechanism. [11]

Theory

Adding a sector containing dark photons to the Lagrangian of the Standard Model can be done in a straightforward and minimal way by introducing a new U(1) gauge field. [2] The specifics of the interaction between this new field, potential new particle content (e.g., a Dirac fermion for dark matter) and the Standard Model particles are virtually only limited by the creativity of the theorist and the constraints that have already been put on certain kinds of couplings. The arguably most popular basic model involves a single new broken U(1) gauge symmetry and kinetic mixing between the corresponding dark photon field and the Standard Model hypercharge fields. The operator at play is , where is the field strength tensor of the dark photon field and denotes the field strength tensor of the Standard Model weak hypercharge fields. This term arises naturally by writing down all terms allowed by the gauge symmetry. After electroweak symmetry breaking and diagonalising the terms containing the field strength tensors (kinetic terms) by redefining the fields, the relevant terms in the Lagrangian are

where is the mass of the dark photon (in this case it can be thought of as being generated by the Higgs or Stueckelberg mechanism), is the parameter describing the kinetic mixing strength and denotes the electromagnetic current with its coupling . The fundamental parameters of this model are thus the mass of the dark photon and the strength of the kinetic mixing. Other models leave the new U(1) gauge symmetry unbroken, resulting in a massless dark photon carrying a long-range interaction. [12] [13] The incorporation of new Dirac fermions as dark matter particles in this theory is uncomplicated and can be achieved by simply adding the Dirac terms to the Lagrangian. [14] A massless dark photon, however, will be fully decoupled from the Standard Model and will not have any experimental consequence by itself. [15] If there is an additional particle in the model which was originally interacting with the dark photon, it will become a millicharged particle which could be directly searched for. [16] [17]

Experiments

Direct conversion

Constraints on the dark photon's kinetic mixing parameter DarkPhoton.pdf
Constraints on the dark photon's kinetic mixing parameter

A massive dark photon candidate with kinetic mixing strength could spontaneously convert to a Standard Model photon. A cavity, with resonant frequency tuned to match the mass of a dark photon candidate , can be used to capture the resulting photon.

One technique to detect the presence of signal photon in the cavity is to amplify the cavity field with a quantum limited amplifier. This method is prevalent in the search for axion dark matter. With linear amplification, however, is difficult to overcome the effective noise imposed by the standard quantum limit and search for dark photon candidates that would produce a mean cavity population much less than 1 photon.

By counting the number of photons in the cavity, it is possible to subvert the quantum limit. This technique has been demonstrated by researchers at the University of Chicago in collaboration with Fermilab. [18] The experiment has excluded dark photon candidates with mass centered around 24.86 μeV and by using a superconducting qubit to repeatedly measure the same photon. This has enabled a search speed up of over 1,000 as compared to the conventional linear amplification technique.

Accelerator searches

For a dark photon mass above the MeV, current limits are dominated by experiments based in particle accelerators. Assuming that dark photons produced in the collisions would then decay mainly into positron-electron pairs, the experiments search for an excess of electron-positron pairs that would originate from the dark photon decay. On average, experimental results now indicate that this hypothetical particle must interact with electrons at least a thousand times more feebly than the standard photon.

In more details, for a dark photon which would be more massive than a proton (thus with mass larger than a GeV), the best limits would arise from collider experiments. While several experimental apparatus have been leveraged in the search for this particle, [19] some notable examples are the BaBar experiment, [10] or the LHCb [20] and CMS experiments at the LHC. For dark photon of intermediary masses (roughly between the electron and proton masses), the best constraints arise from fixed target experiments. As an example, the Heavy Photon Search (HPS) experiment [21] at Jefferson Lab collides multi-GeV electrons with a tungsten target foil in searching for this particle.

See also

Related Research Articles

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5×1012 K (from the Large Hadron Collider).

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

In physics, mirror matter, also called shadow matter or Alice matter, is a hypothetical counterpart to ordinary matter.

The strong CP problem is a question in particle physics, which brings up the following quandary: why does quantum chromodynamics (QCD) seem to preserve CP-symmetry?

In particle physics, the Peccei–Quinn theory is a well-known, long-standing proposal for the resolution of the strong CP problem formulated by Roberto Peccei and Helen Quinn in 1977. The theory introduces a new anomalous symmetry to the Standard Model along with a new scalar field which spontaneously breaks the symmetry at low energies, giving rise to an axion that suppresses the problematic CP violation. This model has long since been ruled out by experiments and has instead been replaced by similar invisible axion models which utilize the same mechanism to solve the strong CP problem.

In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in Euclidean dimensions, each fermionic field results in identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit.

<span class="mw-page-title-main">Neutrinoless double beta decay</span> A nuclear physics process that has yet to observed

Neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

The electron electric dipole momentde is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field:

In particle physics, the Peskin–Takeuchi parameters are a set of three measurable quantities, called S, T, and U, that parameterize potential new physics contributions to electroweak radiative corrections. They are named after physicists Michael Peskin and Tatsu Takeuchi, who proposed the parameterization in 1990; proposals from two other groups came almost simultaneously.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypothetical gravity-bearing particle, the graviton, can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.

<span class="mw-page-title-main">Gluon field strength tensor</span> Second rank tensor in quantum chromodynamics

In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.

Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

<span class="mw-page-title-main">Dual photon</span> Hypothetical particle dual to the photon

In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric–magnetic duality which is predicted by some theoretical models, including M-theory.

References

  1. 1 2 Essig, R.; Jaros, J. A.; Wester, W.; Adrian, P. Hansson; Andreas, S.; Averett, T.; Baker, O.; Batell, B.; Battaglieri, M. (2013-10-31). "Dark Sectors and New, Light, Weakly-Coupled Particles". arXiv: 1311.0029 [hep-ph].
  2. 1 2 Holdom, Bob (1986-01-09). "Two U(1)'s and ϵ charge shifts". Physics Letters B. 166 (2): 196–198. Bibcode:1986PhLB..166..196H. doi:10.1016/0370-2693(86)91377-8. ISSN   0370-2693.
  3. Galison, Peter; Manohar, Aneesh (1984-03-08). "Two Z's or not two Z's?". Physics Letters B. 136 (4): 279–283. Bibcode:1984PhLB..136..279G. doi:10.1016/0370-2693(84)91161-4. ISSN   0370-2693.
  4. Battaglieri, Marco; Belloni, Alberto; Chou, Aaron; Cushman, Priscilla; Echenard, Bertrand; Essig, Rouven; Estrada, Juan; Feng, Jonathan L.; Flaugher, Brenna (2017-07-14). "US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report". arXiv: 1707.04591 [hep-ph].
  5. Pospelov, Maxim; Ritz, Adam (January 2009). "Astrophysical Signatures of Secluded Dark Matter". Physics Letters B. 671 (3): 391–397. arXiv: 0810.1502 . Bibcode:2009PhLB..671..391P. doi:10.1016/j.physletb.2008.12.012. S2CID   14611829.
  6. Arkani-Hamed, Nima; Finkbeiner, Douglas P.; Slatyer, Tracy R.; Weiner, Neal (2009-01-27). "A Theory of Dark Matter". Physical Review D. 79 (1): 015014. arXiv: 0810.0713 . Bibcode:2009PhRvD..79a5014A. doi:10.1103/PhysRevD.79.015014. ISSN   1550-7998. S2CID   17059718.
  7. Pospelov, Maxim (2009-11-02). "Secluded U(1) below the weak scale". Physical Review D. 80 (9): 095002. arXiv: 0811.1030 . Bibcode:2009PhRvD..80i5002P. doi:10.1103/PhysRevD.80.095002. ISSN   1550-7998. S2CID   202294.
  8. Endo, Motoi; Hamaguchi, Koichi; Mishima, Go (2012-11-27). "Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy". Physical Review D. 86 (9): 095029. arXiv: 1209.2558 . Bibcode:2012PhRvD..86i5029E. doi:10.1103/PhysRevD.86.095029. ISSN   1550-7998. S2CID   118418557.
  9. Giusti, D.; Lubicz, V.; Martinelli, G.; Sanfilippo, F.; Simula, S. (October 2017). "Strange and charm HVP contributions to the muon ($g - 2)$ including QED corrections with twisted-mass fermions". Journal of High Energy Physics. 2017 (10): 157. arXiv: 1707.03019 . Bibcode:2017JHEP...10..157G. doi:10.1007/JHEP10(2017)157. ISSN   1029-8479. S2CID   119060801.
  10. 1 2 Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Feng, M.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T. (2014-11-10). "Search for a Dark Photon in e + e − Collisions at BaBar". Physical Review Letters. 113 (20): 201801. doi: 10.1103/PhysRevLett.113.201801 . hdl: 2445/133066 . ISSN   0031-9007. PMID   25432035.
  11. Arias, Paola; Cadamuro, Davide; Goodsell, Mark; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas (2012-06-08). "WISPy Cold Dark Matter". Journal of Cosmology and Astroparticle Physics. 2012 (6): 013. arXiv: 1201.5902 . Bibcode:2012JCAP...06..013A. doi:10.1088/1475-7516/2012/06/013. ISSN   1475-7516. S2CID   55566455.
  12. Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc (2009-01-23). "Dark Matter and Dark Radiation". Physical Review D. 79 (2): 023519. arXiv: 0810.5126 . Bibcode:2009PhRvD..79b3519A. doi:10.1103/PhysRevD.79.023519. ISSN   1550-7998. S2CID   10056950.
  13. Foot, Robert; Vagnozzi, Sunny (2015). "Dissipative hidden sector dark matter". Physical Review D. 91 (2): 023512. arXiv: 1409.7174 . Bibcode:2015PhRvD..91b3512F. doi:10.1103/PhysRevD.91.023512. S2CID   119288106.
  14. Ilten, Philip; Soreq, Yotam; Williams, Mike; Xue, Wei (2018-01-15). "Serendipity in dark photon searches". Journal of High Energy Physics. 2018 (6): 4. arXiv: 1801.04847 . Bibcode:2018JHEP...06..004I. doi:10.1007/JHEP06(2018)004. S2CID   59408241.
  15. Holdom, Bob (January 1986). "Two U(1)'s and ϵ charge shifts". Physics Letters B. 166 (2): 196–198. Bibcode:1986PhLB..166..196H. doi:10.1016/0370-2693(86)91377-8.
  16. Antel, C.; Battaglieri, M.; Beacham, J.; Boehm, C.; Buchmüller, O.; Calore, F.; Carenza, P.; Chauhan, B.; Cladè, P.; Coloma, P.; Crivelli, P.; Dandoy, V.; Darmé, L.; Dey, B.; Deppisch, F. F. (2023-12-11). "Feebly-interacting particles: FIPs 2022 Workshop Report". The European Physical Journal C. 83 (12): 1122. arXiv: 2305.01715 . Bibcode:2023EPJC...83.1122A. doi: 10.1140/epjc/s10052-023-12168-5 . hdl: 20.500.11850/648117 . ISSN   1434-6052.
  17. Ilten, Philip; Soreq, Yotam; Williams, Mike; Xue, Wei (2018-01-15). "Serendipity in dark photon searches". Journal of High Energy Physics. 2018 (6): 4. arXiv: 1801.04847 . Bibcode:2018JHEP...06..004I. doi:10.1007/JHEP06(2018)004. S2CID   59408241.
  18. Dixit, Akash; Chakram, Srivatsan; He, Kevin; Agrawal, Ankur; Naik, Ravi; Schuster, David; Chou, Aaron (2021). "Searching for Dark Matter with a Superconducting Qubit". Physical Review Letters. 126 (14): 141302. arXiv: 2008.12231 . Bibcode:2021PhRvL.126n1302D. doi:10.1103/PhysRevLett.126.141302. PMID   33891438. S2CID   221341034.
  19. Antel, C.; Battaglieri, M.; Beacham, J.; Boehm, C.; Buchmüller, O.; Calore, F.; Carenza, P.; Chauhan, B.; Cladè, P.; Coloma, P.; Crivelli, P.; Dandoy, V.; Darmé, L.; Dey, B.; Deppisch, F. F. (2023-12-11). "Feebly-interacting particles: FIPs 2022 Workshop Report". The European Physical Journal C. 83 (12): 1122. arXiv: 2305.01715 . Bibcode:2023EPJC...83.1122A. doi: 10.1140/epjc/s10052-023-12168-5 . hdl: 20.500.11850/648117 . ISSN   1434-6052.
  20. Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C. A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A. (2020-01-29). "Search for A ′ → μ + μ − Decays". Physical Review Letters. 124 (4): 041801. doi: 10.1103/PhysRevLett.124.041801 . hdl: 2445/174990 . ISSN   0031-9007. PMID   32058729.
  21. "SLAC Elementary Particle Physics page, Heavy Photon Search". 11 March 2016. Archived from the original on 31 May 2023. Retrieved 23 February 2023.