Force carrier

Last updated

In quantum field theory, a force carrier (also known as a messenger particle, intermediate particle, or exchange particle) [1] is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical field. [2] [3]

Contents

Particle and field viewpoints

Quantum field theories describe nature in terms of fields. Each field has a complementary description as the set of particles of a particular type. A force between two particles can be described either as the action of a force field generated by one particle on the other, or in terms of the exchange of virtual force carrier particles between them. [4]

The energy of a wave in a field (for example, electromagnetic waves in the electromagnetic field) is quantized, and the quantum excitations of the field can be interpreted as particles. The Standard Model contains the following particles, each of which is an excitation of a particular field:

In addition, composite particles such as mesons, as well as quasiparticles, can be described as excitations of an effective field.

Gravity is not a part of the Standard Model, but it is thought that there may be particles called gravitons which are the excitations of gravitational waves. The status of this particle is still tentative, because the theory is incomplete and because the interactions of single gravitons may be too weak to be detected. [5]

Forces from the particle viewpoint

A Feynman diagram of scattering between two electrons by emission of a virtual photon. Electron-scattering.png
A Feynman diagram of scattering between two electrons by emission of a virtual photon.

When one particle scatters off another, altering its trajectory, there are two ways to think about the process. In the field picture, we imagine that the field generated by one particle caused a force on the other. Alternatively, we can imagine one particle emitting a virtual particle which is absorbed by the other. The virtual particle transfers momentum from one particle to the other. This particle viewpoint is especially helpful when there are a large number of complicated quantum corrections to the calculation since these corrections can be visualized as Feynman diagrams containing additional virtual particles.

Another example involving virtual particles is beta decay where a virtual W boson is emitted by a nucleon and then decays to e± and (anti)neutrino.

The description of forces in terms of virtual particles is limited by the applicability of the perturbation theory from which it is derived. In certain situations, such as low-energy QCD and the description of bound states, perturbation theory breaks down.

History

The concept of messenger particles dates back to the 18th century when the French physicist Charles Coulomb showed that the electrostatic force between electrically charged objects follows a law similar to Newton's Law of Gravitation. In time, this relationship became known as Coulomb's law. By 1862, Hermann von Helmholtz had described a ray of light as the "quickest of all the messengers". In 1905, Albert Einstein proposed the existence of a light-particle in answer to the question: "what are light quanta?"

In 1923, at the Washington University in St. Louis, Arthur Holly Compton demonstrated an effect now known as Compton scattering. This effect is only explainable if light can behave as a stream of particles and it convinced the physics community of the existence of Einstein's light-particle. Lastly, in 1926, one year before the theory of quantum mechanics was published, Gilbert N. Lewis introduced the term "photon", which soon became the name for Einstein's light particle. [6] From there, the concept of messenger particles developed further, notably to massive force carriers (e.g. for the Yukawa potential).

See also

Related Research Articles

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Photon</span> Elementary particle or quantum of light

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light when in vacuum, 299792458 m/s. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars as well as in the early stages of the universe moments after the Big Bang.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emerge from vacuum at short time and space ranges. The concept of virtual particles arises in the perturbation theory of quantum field theory (QFT) where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

<span class="mw-page-title-main">Subatomic particle</span> Particle smaller than an atom

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. Most force carrying particles like photons or gluons are called bosons and, although they have discrete quanta of energy, do not have rest mass or discrete diameters and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions.

<span class="mw-page-title-main">Gauge boson</span> Elementary particles that are force carriers

In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge bosons, usually as virtual particles.

In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields.

In particle physics, a massless particle is an elementary particle whose invariant mass is zero. At present the only confirmed massless particle is the photon.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

In quantum field theory, a bosonic field is a quantum field whose quanta are bosons; that is, they obey Bose–Einstein statistics. Bosonic fields obey canonical commutation relations, as distinct from the canonical anticommutation relations obeyed by fermionic fields.

<span class="mw-page-title-main">Boson</span> Type of subatomic particle

In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value. Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin. Every observed subatomic particle is either a boson or a fermion.

<span class="mw-page-title-main">Superfluid vacuum theory</span> Theory of fundamental physics

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is considered as a superfluid or as a Bose–Einstein condensate (BEC).

In physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. Although tachyonic particles are a purely hypothetical concept that violate a number of essential physical principles, at least one field with imaginary mass, the Higgs field, is believed to exist. Under no circumstances do any excitations of tachyonic fields ever propagate faster than light—the presence or absence of a tachyonic (imaginary) mass has no effect on the maximum velocity of signals, and so unlike faster-than-light particles there is no violation of causality. Tachyonic fields play an important role in physics and are discussed in popular books.

<span class="mw-page-title-main">History of subatomic physics</span>

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

References

  1. "Exchange Particles".
  2. Jaeger, Gregg (2021). "Exchange Forces in Particle Physics". Foundations of Physics. 51 (1): 13. Bibcode:2021FoPh...51...13J. doi:10.1007/s10701-021-00425-0. S2CID   231811425.
  3. Steven Weinberg, Dreams of a Final Theory, Hutchinson, 1993.
  4. Jaeger, Gregg (2019). "Are virtual particles less real?" (PDF). Entropy. 21 (2): 141. Bibcode:2019Entrp..21..141J. doi: 10.3390/e21020141 . PMC   7514619 . PMID   33266857.
  5. Rothman, Tony; Stephen Boughn (November 2006). "Can Gravitons be Detected?". Foundations of Physics. 36 (12): 1801–1825. arXiv: gr-qc/0601043 . Bibcode:2006FoPh...36.1801R. doi:10.1007/s10701-006-9081-9. S2CID   14008778.
  6. Kragh, Helge (2014). "Photon: New light on an old name". arXiv: 1401.0293 [physics.hist-ph].