Electroweak interaction

Last updated

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246  GeV, [a] they would merge into a single force. Thus, if the temperature is high enough – approximately 1015  K – then the electromagnetic force and weak force merge into a combined electroweak force.

Contents

During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5×1012 K (from the Large Hadron Collider).

Sheldon Glashow, [1] Abdus Salam, [2] and Steven Weinberg [3] were awarded the 1979 Nobel Prize in Physics for their contributions to the unification of the weak and electromagnetic interaction between elementary particles, known as the Weinberg–Salam theory. [4] [5] The existence of the electroweak interactions was experimentally established in two stages, the first being the discovery of neutral currents in neutrino scattering by the Gargamelle collaboration in 1973, and the second in 1983 by the UA1 and the UA2 collaborations that involved the discovery of the W and Z gauge bosons in proton–antiproton collisions at the converted Super Proton Synchrotron. In 1999, Gerardus 't Hooft and Martinus Veltman were awarded the Nobel prize for showing that the electroweak theory is renormalizable.

History

After the Wu experiment in 1956 discovered parity violation in the weak interaction, a search began for a way to relate the weak and electromagnetic interactions. Extending his doctoral advisor Julian Schwinger's work, Sheldon Glashow first experimented with introducing two different symmetries, one chiral and one achiral, and combined them such that their overall symmetry was unbroken. This did not yield a renormalizable theory, and its gauge symmetry had to be broken by hand as no spontaneous mechanism was known, but it predicted a new particle, the Z boson. This received little notice, as it matched no experimental finding.

In 1964, Salam and John Clive Ward [6] had the same idea, but predicted a massless photon and three massive gauge bosons with a manually broken symmetry. Later around 1967, while investigating spontaneous symmetry breaking, Weinberg found a set of symmetries predicting a massless, neutral gauge boson. Initially rejecting such a particle as useless, he later realized his symmetries produced the electroweak force, and he proceeded to predict rough masses for the W and Z bosons. Significantly, he suggested this new theory was renormalizable. [3] In 1971, Gerard 't Hooft proved that spontaneously broken gauge symmetries are renormalizable even with massive gauge bosons.

Formulation

Weinberg's weak mixing angle thW, and relation between coupling constants g, g', and e. Adapted from Lee (1981). Weinberg angle (relation between coupling constants).svg
Weinberg's weak mixing angle θW, and relation between coupling constants g, g′, and e. Adapted from Lee (1981).
The pattern of weak isospin, T3, and weak hypercharge, YW, of the known elementary particles, showing the electric charge, Q, along the weak mixing angle. The neutral Higgs field (circled) breaks the electroweak symmetry and interacts with other particles to give them mass. Three components of the Higgs field become part of the massive
W
and
Z
bosons. Electroweak.svg
The pattern of weak isospin, T3, and weak hypercharge, YW, of the known elementary particles, showing the electric charge, Q, along the weak mixing angle. The neutral Higgs field (circled) breaks the electroweak symmetry and interacts with other particles to give them mass. Three components of the Higgs field become part of the massive
W
and
Z
bosons.

Mathematically, electromagnetism is unified with the weak interactions as a Yang–Mills field with an SU(2) × U(1) gauge group, which describes the formal operations that can be applied to the electroweak gauge fields without changing the dynamics of the system. These fields are the weak isospin fields W1, W2, and W3, and the weak hypercharge field B. This invariance is known as electroweak symmetry.

The generators of SU(2) and U(1) are given the name weak isospin (labeled T) and weak hypercharge (labeled Y) respectively. These then give rise to the gauge bosons that mediate the electroweak interactions – the three W bosons of weak isospin (W1, W2, and W3), and the B boson of weak hypercharge, respectively, all of which are "initially" massless. These are not physical fields yet, before spontaneous symmetry breaking and the associated Higgs mechanism.

In the Standard Model, the observed physical particles, the
W±
and
Z0
bosons
, and the photon, are produced through the spontaneous symmetry breaking of the electroweak symmetry SU(2) × U(1)Y to U(1)em, [b] effected by the Higgs mechanism (see also Higgs boson), an elaborate quantum-field-theoretic phenomenon that "spontaneously" alters the realization of the symmetry and rearranges degrees of freedom. [8] [9] [10] [11]

The electric charge arises as the particular linear combination (nontrivial) of YW (weak hypercharge) and the T3 component of weak isospin () that does not couple to the Higgs boson. That is to say: the Higgs and the electromagnetic field have no effect on each other, at the level of the fundamental forces ("tree level"), while any other combination of the hypercharge and the weak isospin must interact with the Higgs. This causes an apparent separation between the weak force, which interacts with the Higgs, and electromagnetism, which does not. Mathematically, the electric charge is a specific combination of the hypercharge and T3 outlined in the figure.

U(1)em (the symmetry group of electromagnetism only) is defined to be the group generated by this special linear combination, and the symmetry described by the U(1)em group is unbroken, since it does not directly interact with the Higgs. [c]

The above spontaneous symmetry breaking makes the W3 and B bosons coalesce into two different physical bosons with different masses – the
Z0
boson, and the photon (
γ
),

where θW is the weak mixing angle . The axes representing the particles have essentially just been rotated, in the (W3, B) plane, by the angle θW. This also introduces a mismatch between the mass of the
Z0
and the mass of the
W±
particles (denoted as mZ and mW, respectively),

The W1 and W2 bosons, in turn, combine to produce the charged massive bosons
W±
[12] :

Lagrangian

Before electroweak symmetry breaking

The Lagrangian for the electroweak interactions is divided into four parts before electroweak symmetry breaking becomes manifest,

The term describes the interaction between the three W vector bosons and the B vector boson,

where () and are the field strength tensors for the weak isospin and weak hypercharge gauge fields.

is the kinetic term for the Standard Model fermions. The interaction of the gauge bosons and the fermions are through the gauge covariant derivative,

where the subscript j sums over the three generations of fermions; Q, u, and d are the left-handed doublet, right-handed singlet up, and right handed singlet down quark fields; and L and e are the left-handed doublet and right-handed singlet electron fields. The Feynman slash means the contraction of the 4-gradient with the Dirac matrices, defined as

and the covariant derivative (excluding the gluon gauge field for the strong interaction) is defined as

Here is the weak hypercharge and the are the components of the weak isospin.

The term describes the Higgs field and its interactions with itself and the gauge bosons,

where is the vacuum expectation value.

The term describes the Yukawa interaction with the fermions,

and generates their masses, manifest when the Higgs field acquires a nonzero vacuum expectation value, discussed next. The for are matrices of Yukawa couplings.

After electroweak symmetry breaking

The Lagrangian reorganizes itself as the Higgs field acquires a non-vanishing vacuum expectation value dictated by the potential of the previous section. As a result of this rewriting, the symmetry breaking becomes manifest. In the history of the universe, this is believed to have happened shortly after the hot big bang, when the universe was at a temperature 159.5±1.5  GeV [13] (assuming the Standard Model of particle physics).

Due to its complexity, this Lagrangian is best described by breaking it up into several parts as follows.

The kinetic term contains all the quadratic terms of the Lagrangian, which include the dynamic terms (the partial derivatives) and the mass terms (conspicuously absent from the Lagrangian before symmetry breaking)

where the sum runs over all the fermions of the theory (quarks and leptons), and the fields and are given as

with to be replaced by the relevant field () and fabc by the structure constants of the appropriate gauge group.

The neutral current and charged current components of the Lagrangian contain the interactions between the fermions and gauge bosons,

where The electromagnetic current is

where is the fermions' electric charges. The neutral weak current is

where is the fermions' weak isospin. [d]

The charged current part of the Lagrangian is given by

where is the right-handed singlet neutrino field, and the CKM matrix determines the mixing between mass and weak eigenstates of the quarks. [d]

contains the Higgs three-point and four-point self interaction terms,

contains the Higgs interactions with gauge vector bosons,

contains the gauge three-point self interactions,

contains the gauge four-point self interactions,

contains the Yukawa interactions between the fermions and the Higgs field,

See also

Notes

  1. The particular number 246 GeV is taken to be the vacuum expectation value of the Higgs field (where is the Fermi coupling constant).
  2. Note that U(1)Y and U(1)em are distinct instances of generic U(1): Each of the two forces gets its own, independent copy of the unitary group.
  3. Although electromagnetism – e.g. the photon – does not directly interact with the Higgs boson, it does interact indirectly, through quantum fluctuations.
  4. 1 2 Note the factors in the weak coupling formulas: These factors are deliberately inserted to expunge any left-chiral components of the spinor fields. This is why electroweak theory is said to be a ' chiral theory '.

Related Research Articles

<span class="mw-page-title-main">Weak interaction</span> Interaction between subatomic particles and one of the four known fundamental interactions

In nuclear physics and particle physics, the weak interaction, also called the weak force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavordynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

<span class="mw-page-title-main">W and Z bosons</span> Bosons that mediate the weak interaction

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z0
. The
W±
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The
Z0
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The
W±
 bosons have a magnetic moment, but the
Z0
has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons with which it interacts to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature.

<span class="mw-page-title-main">Yang–Mills theory</span> In physics, a quantum field theory

Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of the understanding of the Standard Model of particle physics.

In particle physics, the Peccei–Quinn theory is a well-known, long-standing proposal for the resolution of the strong CP problem formulated by Roberto Peccei and Helen Quinn in 1977. The theory introduces a new anomalous symmetry to the Standard Model along with a new scalar field which spontaneously breaks the symmetry at low energies, giving rise to an axion that suppresses the problematic CP violation. This model has long since been ruled out by experiments and has instead been replaced by similar invisible axion models which utilize the same mechanism to solve the strong CP problem.

In field theory, the Stueckelberg action describes a massive spin-1 field as an R Yang–Mills theory coupled to a real scalar field . This scalar field takes on values in a real 1D affine representation of R with as the coupling strength.

In quantum field theory, the theta vacuum is the semi-classical vacuum state of non-abelian Yang–Mills theories specified by the vacuum angleθ that arises when the state is written as a superposition of an infinite set of topologically distinct vacuum states. The dynamical effects of the vacuum are captured in the Lagrangian formalism through the presence of a θ-term which in quantum chromodynamics leads to the fine tuning problem known as the strong CP problem. It was discovered in 1976 by Curtis Callan, Roger Dashen, and David Gross, and independently by Roman Jackiw and Claudio Rebbi.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

<span class="mw-page-title-main">Neutral current</span> Weak force particle interaction

Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons.

<span class="mw-page-title-main">Møller scattering</span> Electron-electron scattering

Møller scattering is the name given to electron-electron scattering in quantum field theory, named after the Danish physicist Christian Møller. The electron interaction that is idealized in Møller scattering forms the theoretical basis of many familiar phenomena such as the repulsion of electrons in the helium atom. While formerly many particle colliders were designed specifically for electron-electron collisions, more recently electron-positron colliders have become more common. Nevertheless, Møller scattering remains a paradigmatic process within the theory of particle interactions.

<span class="mw-page-title-main">Bhabha scattering</span> Electron-positron scattering

In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process:

<span class="mw-page-title-main">Charged current</span> One way that particles can interact with the weak force

Charged current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the
W+
and
W
bosons
.

In particle physics, the Peskin–Takeuchi parameters are a set of three measurable quantities, called S, T, and U, that parameterize potential new physics contributions to electroweak radiative corrections. They are named after physicists Michael Peskin and Tatsu Takeuchi, who proposed the parameterization in 1990; proposals from two other groups came almost simultaneously.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant under these transformations.

In nuclear physics and atomic physics, weak charge, or rarely neutral weak charge, refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and +0.07 per proton. It also shows an effect of parity violation during electron scattering.

References

  1. Glashow, S. (1959). "The renormalizability of vector meson interactions." Nucl. Phys.10, 107.
  2. Salam, A.; Ward, J. C. (1959). "Weak and electromagnetic interactions". Nuovo Cimento. 11 (4): 568–577. Bibcode:1959NCim...11..568S. doi:10.1007/BF02726525. S2CID   15889731.
  3. 1 2 Weinberg, S (1967). "A Model of Leptons" (PDF). Phys. Rev. Lett. 19 (21): 1264–66. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264. Archived from the original (PDF) on 2012-01-12.
  4. S. Bais (2005). The Equations: Icons of knowledge. p.  84. ISBN   0-674-01967-9.
  5. "The Nobel Prize in Physics 1979". The Nobel Foundation . Retrieved 2008-12-16.
  6. Salam, A.; Ward, J.C. (November 1964). "Electromagnetic and weak interactions". Physics Letters. 13 (2): 168–171. Bibcode:1964PhL....13..168S. doi:10.1016/0031-9163(64)90711-5.
  7. Lee, T.D. (1981). Particle Physics and Introduction to Field Theory.
  8. Englert, F.; Brout, R. (1964). "Broken symmetry and the mass of gauge vector mesons". Physical Review Letters . 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi: 10.1103/PhysRevLett.13.321 .
  9. Higgs, P.W. (1964). "Broken symmetries and the masses of gauge bosons". Physical Review Letters . 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi: 10.1103/PhysRevLett.13.508 .
  10. Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. (1964). "Global conservation laws and massless particles". Physical Review Letters . 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi: 10.1103/PhysRevLett.13.585 .
  11. Guralnik, G.S. (2009). "The history of the Guralnik, Hagen, and Kibble development of the theory of spontaneous symmetry breaking and gauge particles". International Journal of Modern Physics A . 24 (14): 2601–2627. arXiv: 0907.3466 . Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID   16298371.
  12. D. J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. ISBN   0-471-60386-4.
  13. D'Onofrio, Michela; Rummukainen, Kari (2016). "Standard model cross-over on the lattice". Phys. Rev. D. 93 (2): 025003. arXiv: 1508.07161 . Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. hdl: 10138/159845 . S2CID   119261776.

Further reading

General readers

Texts

Articles