Weak hypercharge

Last updated

In the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted and corresponds to the gauge symmetry U(1). [1] [2]

Contents

It is conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak hypercharge (and weak isospin T3). Only a specific combination of them, (electric charge), is conserved.

Mathematically, weak hypercharge appears similar to the Gell-Mann–Nishijima formula for the hypercharge of strong interactions (which is not conserved in weak interactions and is zero for leptons).

In the electroweak theory SU(2) transformations commute with U(1) transformations by definition and therefore U(1) charges for the elements of the SU(2) doublet (for example lefthanded up and down quarks) have to be equal. This is why U(1) cannot be identified with U(1)em and weak hypercharge has to be introduced. [3] [4]

Weak hypercharge was first introduced by Sheldon Glashow in 1961. [4] [5] [6]

Definition

Weak hypercharge is the generator of the U(1) component of the electroweak gauge group, SU(2)×U(1) and its associated quantum field B mixes with the W3 electroweak quantum field to produce the observed
Z
gauge boson and the photon of quantum electrodynamics.

The weak hypercharge satisfies the relation

where Q is the electric charge (in elementary charge units) and T3 is the third component of weak isospin (the SU(2) component).

Rearranging, the weak hypercharge can be explicitly defined as:

Fermion
family
Left-chiral fermions Right-chiral fermions
Electric
charge
Q
Weak
isospin

T3
Weak
hyper-
charge
YW
Electric
charge
Q
Weak
isospin

T3
Weak
hyper-
charge
YW
Leptons
ν
e
,
ν
μ
,
ν
τ
0 +1/21 νR
May not exist
0 0 0

e
,
μ
,
τ
1 1/21
e
R
,
μ
R
,
τ
R
1 0 2
Quarks
u
,
c
,
t
+2/3+1/2+1/3
u
R
,
c
R
,
t
R
+2/30 +4/3
d, s, b 1/31/2+1/3
d
R
,
s
R
,
b
R
1/30 2/3

where "left"- and "right"-handed here are left and right chirality, respectively (distinct from helicity). The weak hypercharge for an anti-fermion is the opposite of that of the corresponding fermion because the electric charge and the third component of the weak isospin reverse sign under charge conjugation.

Weinberg angle
th
W
,
{\displaystyle ~\theta _{\mathsf {W}}~,}
and relation between coupling constants g, g', and e. Adapted from Lee (1981). Weinberg angle (relation between coupling constants).svg
Weinberg angle and relation between coupling constants g, g, and e. Adapted from Lee (1981).
Interaction
mediated
Boson Electric
charge
Q
Weak
isospin
T3
Weak
hypercharge
YW
Weak
W±
±1 ±1 0

Z0
0 0 0
Electromagnetic
γ0
0 0 0
Strong
g
0 0 0
Higgs
H0
0 1/2+1
The pattern of weak isospin, T3, and weak hypercharge, YW, of the known elementary particles, showing electric charge, Q , along the Weinberg angle. The neutral Higgs field (circled) breaks the electroweak symmetry and interacts with other particles to give them mass. Three components of the Higgs field become part of the massive W and Z bosons. Electroweak.svg
The pattern of weak isospin, T3, and weak hypercharge, YW, of the known elementary particles, showing electric charge, Q , along the Weinberg angle. The neutral Higgs field (circled) breaks the electroweak symmetry and interacts with other particles to give them mass. Three components of the Higgs field become part of the massive W and Z bosons.

The sum of −isospin and +charge is zero for each of the gauge bosons; consequently, all the electroweak gauge bosons have

Hypercharge assignments in the Standard Model are determined up to a twofold ambiguity by requiring cancellation of all anomalies.

Alternative half-scale

For convenience, weak hypercharge is often represented at half-scale, so that

which is equal to just the average electric charge of the particles in the isospin multiplet. [8] [9]

Baryon and lepton number

Weak hypercharge is related to baryon number minus lepton number via:

where X is a conserved quantum number in GUT. Since weak hypercharge is always conserved within the Standard Model and most extensions, this implies that baryon number minus lepton number is also always conserved.

Neutron decay


n

p
+
e
+
ν
e

Hence neutron decay conserves baryon number B and lepton number L separately, so also the difference BL is conserved.

Proton decay

Proton decay is a prediction of many grand unification theories.


p+
 
 
e+
  +
π0
└→   2
γ

Hence this hypothetical proton decay would conserve BL, even though it would individually violate conservation of both lepton number and baryon number.

See also

Related Research Articles

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest man-made temperature in thermal equilibrium is around 5.5x1012 K (from the Large Hadron Collider).

<span class="mw-page-title-main">Grand Unified Theory</span> Any particle physics model that theorizes the merging of the electromagnetic, weak and strong forces

In particle physics, a Grand Unified Theory (GUT) is a model in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.

<span class="mw-page-title-main">Weak interaction</span> Interaction between subatomic particles

In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavourdynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, and neutral leptons. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z0
. The
W±
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The
Z0
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The
W±
 bosons have a magnetic moment, but the
Z0
has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

In particle physics, the hyperchargeY of a particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charge operator that accounts for properties of isospin, electric charge, and flavour. The hypercharge is useful to classify hadrons; the similarly named weak hypercharge has an analogous role in the electroweak interaction.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

In nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons.

A chiral phenomenon is one that is not identical to its mirror image. The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.

In high-energy physics, B − L (pronounced "bee minus ell") is the difference between the baryon number (B) and the lepton number (L).

In particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the
W±
bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I, with the third component written as T3 or I3. It can be understood as the eigenvalue of a charge operator.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

<span class="mw-page-title-main">Neutral current</span> Weak force particle interaction

Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons.

In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group, and specifically, to the generators that commute with the Hamiltonian. Charges are often denoted by the letter Q, and so the invariance of the charge corresponds to the vanishing commutator , where H is the Hamiltonian. Thus, charges are associated with conserved quantum numbers; these are the eigenvalues q of the generator Q.

In particle physics, the X and Y bosons are hypothetical elementary particles analogous to the W and Z bosons, but corresponding to a unified force predicted by the Georgi–Glashow model, a grand unified theory (GUT).

In particle physics, the X charge is a conserved quantum number associated with the SO(10) grand unification theory. It is thought to be conserved in strong, weak, electromagnetic, gravitational, and Higgs interactions. Because the X charge is related to the weak hypercharge, it varies depending on the helicity of a particle. For example, a left-handed quark has an X charge of +1, whereas a right-handed quark can have either an X charge of −1, or −3.

In nuclear physics and atomic physics, weak charge refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and +0.07 per proton. It also shows an effect of parity violation during electron scattering.

References

  1. Donoghue, J.F.; Golowich, E.; Holstein, B.R. (1994). Dynamics of the Standard Model . Cambridge University Press. p.  52. ISBN   0-521-47652-6.
  2. Cheng, T.P.; Li, L.F. (2006). Gauge Theory of Elementary Particle Physics. Oxford University Press. ISBN   0-19-851961-3.
  3. Tully, Christopher G. (2012). Elementary Particle Physics in a Nutshell. Princeton University Press. p. 87. doi:10.1515/9781400839353. ISBN   978-1-4008-3935-3.
  4. 1 2 Glashow, Sheldon L. (February 1961). "Partial-symmetries of weak interactions". Nuclear Physics. 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
  5. Hoddeson, Lillian; Brown, Laurie; Riordan, Michael; Dresden, Max, eds. (1997-11-13). The rise of the Standard Model: A history of particle physics from 1964 to 1979 (1st ed.). Cambridge University Press. p. 14. doi:10.1017/cbo9780511471094. ISBN   978-0-521-57082-4.
  6. Quigg, Chris (2015-10-19). "Electroweak symmetry breaking in historical perspective". Annual Review of Nuclear and Particle Science. 65 (1): 25–42. arXiv: 1503.01756 . Bibcode:2015ARNPS..65...25Q. doi: 10.1146/annurev-nucl-102313-025537 . ISSN   0163-8998.
  7. Lee, T.D. (1981). Particle Physics and Introduction to Field Theory . Boca Raton, FL / New York, NY: CRC Press / Harwood Academic Publishers. ISBN   978-3718600335 via Archive.org.
  8. Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory . Addison-Wesley Publishing Company. ISBN   978-0-201-50397-5.
  9. Anderson, M.R. (2003). The Mathematical Theory of Cosmic Strings. CRC Press. p. 12. ISBN   0-7503-0160-0.